Những câu hỏi liên quan
LT
Xem chi tiết
H24
21 tháng 11 2021 lúc 10:31

đề

Bình luận (1)
HL
Xem chi tiết
NH
Xem chi tiết
MN
Xem chi tiết
TM
21 tháng 7 2023 lúc 13:56

chứng minh: \(1+tg^2\alpha=\dfrac{1}{cos^2\alpha}\)
xét VT: \(1+tg^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}\left(vì:tg\left(\alpha\right)=\dfrac{sin\left(\alpha\right)}{cos\left(\alpha\right)}\right)\)
\(=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\left(vì:sin^2\alpha+cos^2\alpha=1\right)=VP\Rightarrow1+tg^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(\Leftrightarrow1+\dfrac{AH^2}{50^2}=\dfrac{1}{\left(\dfrac{AH^2}{AB^2}\right)}=\dfrac{AB^2}{AH^2}\Leftrightarrow\dfrac{2500+AH^2}{2500}=\dfrac{AB^2}{AH^2}\Leftrightarrow2500AH^2+AH^4=2500AB^2\left(1\right)\)
ta có: \(AH^2+BH^2=AB^2\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow2500AH^2+AH^4=2500\left(AH^2+50^2\right)\Leftrightarrow AH^4=2500.2500=50^4\Leftrightarrow AH=50\left(m\right)\left(3\right)\)
\(\left(2\right)\left(3\right)\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{50^2+50^2}=50\sqrt{2}\left(m\right)\)
vậy chiều rộng con sông là: \(AH=50\left(m\right)\) và quãng đường đò đã đi là \(AB=50\sqrt{2}\left(m\right)\)

Bình luận (1)
PB
Xem chi tiết
CT
8 tháng 12 2019 lúc 7:07

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 10 2017 lúc 17:47

Ta có: A1B1 = AB = 12 m

Xét ΔDC1A1 có: C1A1 = C1D.cot49o

Xét ΔDC1B1 có: C1B1 = C1D.cot35o

Mà A1B1 = C1B1 - C1A1 = C1D.cot35o - C1D.cot49o

        = C1D.(cot35o - cot49o)

Giải bài 11 trang 60 sgk Hình học 10 | Để học tốt Toán 10

⇒ CD = CC1 + C1D = 1,3 + 21,47 = 22,77 m.

Vậy chiều cao của tháp là 22,77m.

Bình luận (0)
H24
Xem chi tiết
LL
8 tháng 10 2021 lúc 14:14

Xét tam giác ADC có:

\(\widehat{ACB}=\widehat{ADC}+\widehat{DAC}\)(tính chất góc ngoài)

\(\Rightarrow\widehat{DAC}=\widehat{ACB}-\widehat{ACB}=60^0-30^0=30^0\)

\(\Rightarrow\widehat{DAC}=\widehat{ADC}=30^0\)

=> Tam giác ADC cân tại C

=> AC=DC=20m

Áp dụng tslg trong tam giác ABC vuông tại B:

\(AB=sinC.AC=sin60^0.20=10\sqrt{3}\left(m\right)\)

\(BC=cosC.AC=cos60^0.20=10\left(m\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 2 2018 lúc 7:05

+ Mô tả cách làm:

- Chọn một điểm A cố định bên mép bờ sông bên kia (chẳng hạn như là một thân cây), đặt hai điểm B và B' thẳng hàng với A, điểm B sát mép bờ còn lại và AB chính là khoảng cách cần đo.

- Trên hai đường thẳng vuông góc với AB' tại B và B' lấy C và C' thằng hàng với A.

- Đo độ dài các đoạn BB' = h, BC = a, B'C' = a' ta sẽ tính được đoạn AB.

+ Cách tính AB.

Ta có: BC ⊥ AB’ và B’C’ ⊥ AB’ ⇒ BC // B’C’

ΔAB’C’ có BC // B’C’ (B ∈ AB’, C ∈ AC’)

⇒ Giải bài 12 trang 64 SGK Toán 8 Tập 2 | Giải toán lớp 8 (hệ quả định lý Talet)

Giải bài 12 trang 64 SGK Toán 8 Tập 2 | Giải toán lớp 8

Bình luận (0)
PY
Xem chi tiết