Những câu hỏi liên quan
TT
Xem chi tiết
LD
Xem chi tiết
BB
Xem chi tiết
PM
Xem chi tiết
H24
2 tháng 9 2017 lúc 14:40

cm bằng qui nạp 

thử n=1 ta có n^3+5n = 6 => dúng 

giả sử đúng với n =k 

ta cm đúng với n= k+1 

(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6 

vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2 

mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết 

nế k chẳn thì đương nhiên chia hết 

vậy đúng n= k+ 1 

theo nguyen lý qui nạp ta có điều phai chứng minh

Bình luận (0)
LV
Xem chi tiết
Xem chi tiết
TP
23 tháng 8 2018 lúc 16:59

\(b^2=b\cdot b=a\Rightarrow b=\frac{a}{b}\)

\(bd=1\Rightarrow b=\frac{1}{d}\)

\(\Rightarrow\frac{1}{d}=\frac{a}{b}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{1}{d}=\frac{a+1}{b+d}\left(đpcm\right)\)

Bình luận (0)
H24
23 tháng 8 2018 lúc 17:14

                  \(\text{Bài giải }\)

 \(b^2=b\cdot b=a\text{ }\Rightarrow\text{ }b=\frac{a}{b}\)

 \(bd=1\text{ }\Rightarrow\text{ }b=\frac{1}{d}\)

\(\Rightarrow\text{ }\frac{1}{d}=\frac{a}{b}\)

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có }:\)

                 \(\frac{a}{b}=\frac{1}{d}=\frac{a+1}{b+d}\left(đpcm\right)\)

Bình luận (0)
PP
Xem chi tiết
BT
Xem chi tiết
MT
22 tháng 11 2018 lúc 19:09

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

Bình luận (0)
MT
22 tháng 11 2018 lúc 19:20

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

Bình luận (0)
H24
23 tháng 11 2018 lúc 20:05

Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko 

Bình luận (0)
SM
Xem chi tiết
TA
24 tháng 7 2015 lúc 15:47

Super Man mà lại còn phải lên đây để hỏi bài à?

Bình luận (0)
SM
Xem chi tiết
HA
28 tháng 7 2016 lúc 15:24

Super man hỏi bài? Nghịch lý

Bình luận (0)
KQ
18 tháng 12 2020 lúc 15:57

ok

 

Bình luận (0)