Rút gọn rồi tính giá trị của biểu thức:
( 2a - b)3 - ( 2a - b)( 4a2 + b2) tại a = 1/2 ; b = 2
Cho 4a2 + b2 = 5ab và 2a > b > 0. Tính giá trị của biểu thức: M = ab 4a 2 − b 2
A. 1 9
B. 1 3
C. 3
D. 9
Cho 4a2 + b2 = 5ab với b > 2a > 0. Tính giá trị của biểu thức 5ab / 3a^2+2b^2
Ta có:
\(4a^2+b^2=5ab\Leftrightarrow4a^2+b^2-4ab-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\4a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\left(ktm\right)\\4a=b\left(tm\right)\end{matrix}\right.\)
\(\Rightarrow4a=b\)
\(\Rightarrow\dfrac{5ab}{3a^2+2b^2}=\dfrac{5a.4a}{3a^2+2.\left(4a\right)^2}=\dfrac{20a^2}{3a^2+32a^2}\)
\(=\dfrac{20a^2}{35a^2}=\dfrac{4}{7}\)
\(4a^2+b^2=5ab\)
\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Rightarrow b=4a\left(do.a\ne b\right)\)
\(\dfrac{5ab}{3a^2+2b^2}=\dfrac{20a^2}{3a^2+32a^2}=\dfrac{4}{7}\)
B1 Cho biểu thức: A=(-a+b-c)-(-a-b-c)
a) Rút gọn A
b)Tính giá trụ của A khi a = 1; b = -1; c = -2
B2 Cho biểu thức A =(-m+n-p)-(-m-n-p)
a) Rút gọn A
b)Tính giá trị của A khi m = 1; n = -1; p = -2
B3 Cho biểu thức : A=(-2a+3b-4c)-(-2a-3b-4c)
a) Rút gọn A
b)Tính giá trị của A khi a = 2012;b = -1;c = -2013
bài 1: cho biểu thức P=2/2x+3+3/2x+1-6x+5/(2x+1)(2x+3) a) rút gọn P b)tìm giá trị của x để P=-1 bài 2: cho biểu thức P=(a+1/2a-2+1/2-2a^2):2a+2/a+2 a) rút gọn P b)tính giá trị của P khi |a|=2
rút gọn rồi tính giá trị của biểu thức
A=2a^3-12a^2+17a-2/a-2
biết a là nghiệm của phương trình giá trị tuyệt đối của a^2-3a+1=1
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
Bài 1: Cho biểu thức: A = (–m + n – p) – (–m – n – p)
a) Rút gọn A b) Tính giá trị của A khi m = 1; n = –1; p = –2
Bài 2. Cho biểu thức: A = (–2a + 3b – 4c) – (–2a – 3b – 4c)
a) Rút gọn A b) Tính giá trị của A khi a = 2012; b = –1; c = –2013
Bài 3. Bỏ dấu ngoặc rồi thu gọn biểu thức:
a) A = (a + b) – (a – b) + (a – c) – (a + c)
b) B = (a + b – c) + (a – b + c) – (b + c – a) – (a – b – c)
giải đầy đủ các phép tính giùm mình nhé,cảm ơn các bạn nhiều
a)
A= (-m+n-p)-(-m-n-p)
A= -m+n-p+m+n+p
A= (-m+m) +(n+n) + (-p+p)
A= 0+2n+0
A = 2n
Bài 1:
A = (-m + n - p) - (-m - n - p)
A = -m + n - p + m + n + p
A = (-m + m) + (n + n) - (p - p)
A = 2n
Với n = -1 => A = 2(-1) = -2
Bài 2:
A = (-2a + 3b - 4c) - (-2a -3b - 4c)
A = -2a + 3b - 4c + 2a + 3b + 4c
A = (-2a + 2a) + (3b + 3b) - (4c - 4c)
A = 6b
Với b = -1 => A = 6(-1) = -6
Bài 3:
a) A = (a + b) - (a - b) + (a - c) - (a + c)
A= a + b - a + b + a - c - a - c
A = (a - a + a - a) + (b + b) - (c + c)
A = 2(b - c)
b) B = (a + b - c) + (a - b + c) - (b + c - a) - (a - b - c)
B = a + b - c + a - b + c - b - c + a - a + b + c
B = (a + a + a - a) + (b - b - b + b) - (c - c + c - c)
B = 2a
cho a,b và c thỏa mãn 2a+b+c=-1
hãy tính giá trị biểu thức:P=4a2+b2+c2+4ab+4ac+2ab
Lời giải:
$P=4a^2+b^2+c^2+4ab+4ac+2bc=(2a+b+c)^2=(-1)^2=1$
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0