Cho 4a2 + b2 = 5ab và 2a > b > 0. Tính giá trị của biểu thức: M = ab 4a 2 − b 2
A. 1 9
B. 1 3
C. 3
D. 9
bài 1: cho biểu thức P=2/2x+3+3/2x+1-6x+5/(2x+1)(2x+3) a) rút gọn P b)tìm giá trị của x để P=-1 bài 2: cho biểu thức P=(a+1/2a-2+1/2-2a^2):2a+2/a+2 a) rút gọn P b)tính giá trị của P khi |a|=2
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
M=(2/2a-b + 6b/b^2 - 4a^2 - 4/2a+b) : (1+ 4a^2+4b^2/4a^2-b^2)
a) Rút gọn biểu thức M
b) Tính giá trị biểu thức M khi a=1/3 và b=2
Rút gọn biểu thức (a+b/b-2b/b-a).b-a/a2+b2+(a2+1/2a-1-a/2):a+2/1-2a
cho a,b và c thỏa mãn 2a+b+c=-1
hãy tính giá trị biểu thức:P=4a2+b2+c2+4ab+4ac+2ab
cho biểu thức A= \(\frac{a^2+2a}{2a+10}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)
a) tìm điều kiện xác định
b) rút gọn biểu thức A
c) tính giá trị biểu thức A tại a = -1
d) tính giá trị a để A=0
Cho biểu thức B=(2x+1/2x-1 + 4/1-4x^2 - 2x-1/2x+1)2x+1/x+2
a)Tìm điều kiện của x để biểu thức B được xác định
b)Rút gọn B
c)Tính giá trị của biểu thức B tại x thỏa mãn lx-1l=3
d)Tìm giá trị nguyên của x để B nhận giá trị nguyên