Những câu hỏi liên quan
CL
Xem chi tiết
NT
6 tháng 12 2021 lúc 22:36

b: \(\Leftrightarrow x-15-27-x+x-13=-1\)

\(\Leftrightarrow x-55=-1\)

hay x=54

Bình luận (0)
H24
Xem chi tiết
OO
6 tháng 1 2017 lúc 10:08

Ta có : a(b-2) = 3 
=> a = 3/(b-2) 
mà a Є Z 
=> 3/(b-2) Є Z 
=> b-2 Є ước của 3 ... tức là 3 phải chia hết cho (b - 2) 
=> b Є {-1;1;3;5} 
mà a > 0 
=> 3/(b-2) > 0 
=> b-2 > 0 
=> b > 2 
=> b Є {3;5} 
Thay b vào a = 3/(b-2) thì tìm đc a 

a = 1 ; b = 5 or 
a = 3 ; b = 3

Bình luận (0)
H24
Xem chi tiết
JG
Xem chi tiết
TB
2 tháng 5 2016 lúc 20:43

bang 2 3

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 4 2022 lúc 13:01

Bài 1.

a.\(\left(x-8\right)\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

\(\Leftrightarrow4x-3-x-5=30-3x\)

\(\Leftrightarrow4x-x+3x=30+5+3\)

\(\Leftrightarrow6x=38\)

\(\Leftrightarrow x=\dfrac{19}{3}\)

Bình luận (0)
AH
13 tháng 4 2022 lúc 13:03

Bài 1:

a. $(x-8)(x^3+8)=0$

$\Rightarrow x-8=0$ hoặc $x^3+8=0$

$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$

$\Rightarrow x=8$ hoặc $x=-2$

b.

$(4x-3)-(x+5)=3(10-x)$

$4x-3-x-5=30-3x$

$3x-8=30-3x$

$6x=38$
$x=\frac{19}{3}$

Bình luận (0)
AH
13 tháng 4 2022 lúc 13:05

Bài 2:

$f(x)=(x-1)(x+2)=0$

$\Leftrightarrow x-1=0$ hoặc $x+2=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

Vậy $g(x)$ cũng có nghiệm $x=1$ và $x=-2$

Tức là:

$g(1)=g(-2)=0$

$\Rightarrow 1+a+b+2=-8+4a-2b+2=0$

$\Rightarrow a=0; b=-3$

Bình luận (0)
TV
Xem chi tiết
H24
22 tháng 2 2019 lúc 16:08

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

Bình luận (0)
H24
22 tháng 2 2019 lúc 16:09

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

Bình luận (0)
TP
Xem chi tiết
MT
14 tháng 11 2018 lúc 21:11

Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)

Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)

=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)

Ta có tổng 3 phân số là \(\frac{213}{70}\)

=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)

(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)

(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)

(=) \(\frac{k}{h}=\frac{3}{7}\)

=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)

Bình luận (0)
MT
14 tháng 11 2018 lúc 21:20

bài 3

Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)

=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)

=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)

=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)

Bình luận (0)
MT
14 tháng 11 2018 lúc 21:13

bài 2

Giải:
Gọi 2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)

10≤n≤99⇒21≤2n+1≤19910≤n≤99⇒21≤2n+1≤199

⇒21≤a2≤199⇒21≤a2≤199

Mà 2n + 1 lẻ

⇒2n+1=a2∈{25;49;81;121;169}⇒2n+1=a2∈{25;49;81;121;169}

⇒n∈{12;24;40;60;84}⇒n∈{12;24;40;60;84}

⇒3n+1∈{37;73;121;181;253}⇒3n+1∈{37;73;121;181;253}

Mà 3n + 1 là số chính phương

⇒3n+1=121⇒n=40⇒3n+1=121⇒n=40

Vậy n = 40

Bình luận (0)
NH
Xem chi tiết
MT
3 tháng 6 2015 lúc 23:33

 

(a+b+c)3= (a+b)3+3(a+b)2c+3(a+b)c2+c2

            =a3+3a2b+3ab2+b2+3(a+b)c(a+b+c)+c2

            =a3+b3+c3+3ab(a+b)+3(a+b)c(a+b+c)

            =a3+b3+c3+3(a+b)[ab+c(a+b+c)]

            =a3+b3+c3+3(a+b)(ab+ac+bc+c2)

           =a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]

           =a3+b3+c3+3(a+b)[a(b+c)+c(b+c)]

           =a3+b3+c3+3(a+b)(b+c)(c+a)

Vậy (a+b+c)3 = a3 + b3 + c3 + 3(a+b)(b+c)(c+a)

Bình luận (0)
HN
Xem chi tiết
NT
14 tháng 2 2017 lúc 12:27

bạn có biết ko?

Bình luận (0)
H24
Xem chi tiết