Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TK
Xem chi tiết
PV
Xem chi tiết
VK
23 tháng 5 2016 lúc 15:06

Thieu de 

Bình luận (0)
H24
23 tháng 5 2016 lúc 15:53

nó trả lời ù 

Bình luận (0)
H24
Xem chi tiết
BV
Xem chi tiết
NH
Xem chi tiết
CH
21 tháng 11 2017 lúc 15:10

Do UCLN(n,6) = 1 nên n không chia hết cho 2 và 3.

n không chia hết cho 2 nên n phải là số lẻ, n không chia hết cho 3 nên n chỉ có thể có dạng 3k + 1 hoặc 3k + 2

Nếu n = 3k + 1 thì k phải là số chẵn. Đặt k = 2j, ta có n = 3.2j + 1 = 6j + 1

Khi đó \(n^2-1=\left(6j+1\right)^2-1=36j^2+12j=12j\left(3j+1\right)\)

Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+1\right)=24t\left(6t+1\right)⋮24\)

Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+4\right)=24\left(2t+1\right)\left(3t+2\right)⋮24\)

Vậy \(n^2-1⋮24\)

Nếu \(n=3k+2\) thì k là số lẻ. Đặt \(k=2j+1\Rightarrow n=3\left(2j+1\right)+2=6j+5\)

\(n^2-1=\left(6j+5\right)^2-1=36j^2+60j+24=12j\left(3j+5\right)+24\)

Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+5\right)=24t\left(6t+5\right)⋮24\)

Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+8\right)=24\left(2t+1\right)\left(3t+4\right)⋮24\)

Vậy \(n^2-1⋮24\)

Tóm lại , khi UCLN(n ; 6) = 1 thì \(n^2-1⋮6\)

Bình luận (0)
NC
Xem chi tiết
NT
23 tháng 8 2021 lúc 22:03

Ta có: a chia hết cho b

nên a=bk

hay \(b=\dfrac{a}{k}\)

Ta có: b chia hết cho c

nên b=cx

\(\Leftrightarrow cx=\dfrac{a}{k}\)

hay a=cxk

Vậy: a chia hết cho c

Bình luận (0)
LL
23 tháng 8 2021 lúc 22:03

\(a⋮b\Rightarrow a=b.n\left(n\in Z\right)\left(1\right)\)

\(b⋮c\Rightarrow b=c.m\left(m\in Z\right)\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow a=c.m.n⋮c\)( do \(m,n\in Z\))

Bình luận (0)
TN
23 tháng 8 2021 lúc 22:06

vì a chia hết cho b nên a = b . k( k1 ∈ N ) (1)

    b chia hết cho c nên b = c . k( k2 ∈ N ) (2)

từ (1) và (2) 

=> a = c . k1 . k2 

=> a = c .k ( k = k1 . k2 )

Bình luận (0)
HT
Xem chi tiết
LY
Xem chi tiết
HP
2 tháng 3 2021 lúc 12:42

Áp dụng BĐT BSC:

\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)

\(=\dfrac{b\left(a+b\right)-b^2}{a+b}+\dfrac{c\left(b+c\right)-c^2}{b+c}+\dfrac{a\left(c+a\right)-a^2}{c+a}\)

\(=a+b+c-\left(\dfrac{a^2}{c+a}+\dfrac{b^2}{a+b}+\dfrac{c^2}{c+a}\right)\)

\(\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

Đẳng thức xảy ra khi \(a=b=c\)

Bình luận (0)
NC
2 tháng 3 2021 lúc 14:23

4ab ≤ (a + b)2 ⇒ \(\dfrac{4ab}{a+b}\le a+b\)

Tương tự \(\dfrac{4ac}{a+c}\le a+c\) ; \(\dfrac{4bc}{b+c}\le b+c\)

⇒ Cộng lại vế với vế :

4VT ≤ 2 (a+b+c) ⇒ VT ≤ \(\dfrac{a+b+c}{2}\)

Bình luận (0)
NT
Xem chi tiết
NP
11 tháng 11 2019 lúc 18:16

abc va def co phai la so tu nhien khong?

Bình luận (0)
 Khách vãng lai đã xóa