Những câu hỏi liên quan
H24
Xem chi tiết
AH
3 tháng 2 2024 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Bình luận (0)
AH
3 tháng 2 2024 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Bình luận (0)
AH
3 tháng 2 2024 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Bình luận (0)
H24
Xem chi tiết
NM
13 tháng 11 2021 lúc 15:23

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

Bình luận (0)
H24
13 tháng 11 2021 lúc 15:24

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

Bình luận (0)
ND
6 tháng 1 lúc 13:45

um


Bình luận (0)
TN
Xem chi tiết
BH
4 tháng 11 2021 lúc 22:02

lỗi r bn ơi

Bình luận (0)
NT
4 tháng 11 2021 lúc 22:04

Bạn ghi lại đề đi bạn

Bình luận (0)
CZ
Xem chi tiết
H24
Xem chi tiết
AH
4 tháng 2 2024 lúc 19:18

Lời giải:
Để PS $\frac{2a-3}{4}$ dương và có giá trị nhỏ nhất thì $2a-3>0$ và nhỏ nhất

Vì $2a-3$ nguyên nên $2a-3$ dương và có giá trị nhỏ nhất khi $2a-3=1$

$\Rightarrow a=2$
Vậy $\frac{2a-3}{4}$ nhỏ nhất bằng $\frac{1}{4}$

Bình luận (0)
NB
Xem chi tiết
H24
Xem chi tiết
TG
23 tháng 6 2021 lúc 19:40

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

Bình luận (0)
H24
23 tháng 6 2021 lúc 19:41

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Bình luận (0)
NH
Xem chi tiết
YN
26 tháng 3 2022 lúc 21:47

`Answer:`

undefined

Bình luận (0)
 Khách vãng lai đã xóa
MN
Xem chi tiết
DS
11 tháng 4 2020 lúc 21:20

C=a2-4ab+4b2+b2-2b+1-7=(a-2b)2+(b-1)2-7 > hoặc =-7

dấu = xảy ra khi a-2b=0      

                            b-1=0

<=>a=2;b=1

..................................

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
TM
18 tháng 5 2016 lúc 10:00

\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)

\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)

\(M=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\) với mọi x

=>\(\left(x+1\right)^2+1\ge1\) với mọi x

=>GTNN của M là 1

Dấu "=" xảy ra <=> x+1=0<=>x=-1

Bình luận (0)
TN
18 tháng 5 2016 lúc 9:58

Mmin=1 khi x=-1

Bình luận (0)
TN
18 tháng 5 2016 lúc 10:00

a haha đoán bừa mà cũng đúng

Bình luận (0)