Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
Chứng minh rằng ; a) BC = BD b) BA là tia phân giác của góc DBC.
Cho tam giác ABC cân ở A. Trên tia đối của tia AC lấy điểm D sao cho AD=AC.Chứng minh tam giác BCD vuông.
Cho tam giác ABC vuông tại A (AB < AC). Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
1) Chứng minh rằng : BC = DE.
2) Chứng minh rằng : Tam giác ABD vuông cân và BD // CE.
3) Vẽ đường cao AH của tam giác ABC, tia AH cắt cạnh DE tại M. Từ A vẽ đường vuông góc với CM tại K, đường thẳng này cắt BC tại N.
Chứng minh rằng : MN // AB và AM = 1/2 DE.
1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)
Suy ra: BC=DE(hai cạnh tương ứng)
2) Xét ΔABD có AB=AD(gt)
nên ΔABD cân tại A(Định nghĩa tam giác cân)
Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)
nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)
Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao c AC=AD . Trên tia đối của tia BA lấy điểm M bất kì. Chứng minh rằng:
a) B4 là tia phân giác của CBD.
b) tam giácMBC = tam giácMBD.
Cho tam giác ABC vuông tại A .Trên tia đối của tia AC lấy điểm D sao cho AD=AC. Chứng minh rằng :
a, BA là tia phân giác của góc CBD
b, Treeb tia đối của tia BA lấy điểm M sao cho BA=BM. Chưng minh tam giác MBD=MBC
A) XÉT \(\Delta BDA\)VÀ\(\Delta BCA\)CÓ
\(DA=CA\left(GT\right)\)
\(\widehat{BAD}=\widehat{BAC}=90^o\)
AB LÀ CẠNH CHUNG
\(\Rightarrow\Delta BDA=\Delta BCA\left(C-G-G\right)\)
=>\(\widehat{B_1}=\widehat{B_2}\)
=> BA LÀ PHÂN GIÁC CỦA \(\widehat{CBD}\)
B)
TA CÓ
\(\widehat{B_2}+\widehat{B_4}=180^o\left(KB\right)\)
\(\widehat{B_1}+\widehat{B_3}=180^o\left(KB\right)\)
MÀ \(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\widehat{B_4}=\widehat{B_3}\)
XÉT \(\Delta MBD\)VÀ\(\Delta MBC\)CÓ
MB LÀ CẠNH CHUNG
\(\widehat{B_4}=\widehat{B_3}\left(CMT\right)\)
\(BD=BC\left(\Delta BDA=\Delta BCA\right)\)
=>\(\Delta MBD\)=\(\Delta MBC\)(C-G-C)
Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao cho AC = AD. Trên tia đối của tia BA lấy điểm M bất kì. Chứng minh rằng: a) BA là tia phân giác của góc CBD. b) tam giác MBC = tam giác MBD .(vẽ hình hộ luôn ạ )
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. a) Chứng minh: BC = DE. b) Chứng minh: tam giác ABD vuông cân và BD // CE. c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh: NM // AB. d) Chứng minh: AM = DE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ABD}=\widehat{ADB}=45^0\)
Xét ΔAEC vuông tại A có AE=AC
nên ΔAEC vuông cân tại A
=>\(\widehat{AEC}=\widehat{ACE}=45^0\)
Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//CE
Cho tam giác ABC vuông tại A ( ab lớn hơn AC) Trên tia đối của tia ac lấy điểm D sao cho AD = ab Trên tia đối của AB lấy điểm E sao cho ae = AC Chứng minh a tam giác ABC bằng tam giác ade b aec=ace=45 độ
a) Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔABC=ΔADE(hai cạnh góc vuông)
Cho tam giác ABC vuông tại A.Trên tia đối của tia AC lấy điểm D sao cho AD=AC a)chứng minh ABC=ABD b)Trên tia đối của tia AB lấy điểm M.Chứng minh MBD=MBC
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
Suy ra: \(\widehat{ABC}=\widehat{ABD}\)
cho tam giác ABC vuông tại A. trên tia đối của tia AC lấy điểm D sao cho AD = AC.
a) chứng minh tam giác ABC = tam giác ABD
b) trên tia đối cua tia AB lấy điểm M. chứng minh tam giác MBD = tam giác MBC