Những câu hỏi liên quan
TS
Xem chi tiết
09
Xem chi tiết
TH
Xem chi tiết
MN
13 tháng 7 2021 lúc 16:11

Yêu cầu của đề là gì vậy em ?

Bình luận (1)
DH
Xem chi tiết
VN
Xem chi tiết
H24
12 tháng 12 2021 lúc 19:58

\(MCD:\left(R1//R2\right)ntR3\)

\(=>R=R12+R3=\dfrac{R1\cdot R2}{R1+R2}+R3=\dfrac{12\cdot6}{12+6}+8=12\Omega\)

\(=>I=I12=I3=\dfrac{U}{R}=\dfrac{24}{12}=2A\)

\(=>U3=I3\cdot R3=2\cdot8=16V\)

\(=>U12=U1=U2=U-U3=24-16=8V\)

\(=>\left\{{}\begin{matrix}I2=U2:R2=8:6=\dfrac{4}{3}A\\I1=U1:R1=8:12=\dfrac{2}{3}A\end{matrix}\right.\)

\(=>A=UIt=24\cdot2\cdot\dfrac{150}{60}=120\)Wh = 0,12kWh

\(=>T=A\cdot1700=0,12\cdot1700=204\left(dong\right)\)

Bình luận (0)
KF
Xem chi tiết
NT
4 tháng 11 2023 lúc 22:25

R1nt(R2//R3

a) \(R_{23}=\dfrac{R_2.R_3}{R_2+R_3}=2\left(\Omega\right)\)

\(\rightarrow R_{td}=R_1+R_{23}=4+2=6\left(\Omega\right)\)

b) Ta có : \(I_1=I_{23}=I=\dfrac{U}{R_{tđ}}=\dfrac{6}{2}=3A\)

\(U_{23}=U_2=U_3=I_{23}.R_{23}=3.2=6V\)

 \(\rightarrow I_2=\dfrac{U_2}{R_2}=\dfrac{6}{6}=1A\)

Bình luận (1)
TL
Xem chi tiết
H24
8 tháng 10 2021 lúc 15:39

Bạn tách ra rồi đăng từng bài một nhé!

Bình luận (2)
MY
8 tháng 10 2021 lúc 19:11

\(12.R1//R2\Rightarrow\left\{{}\begin{matrix}a,\Rightarrow U=U1=I1.R1=20.4=80V\\\Rightarrow R2=\dfrac{U}{I2}=\dfrac{80}{2,2}=\dfrac{400}{11}\left(\Omega\right)\\b,R2//R3\Rightarrow\dfrac{R2.R3}{R2+R3}=\dfrac{U}{I'}=\dfrac{80}{5,2}=\dfrac{200}{13}\Rightarrow R3\approx26,67\left(\Omega\right)\\\Rightarrow I2=I'-I3=5,2-\dfrac{U}{R3}\approx2,2A\end{matrix}\right.\)

\(13\Rightarrow\left\{{}\begin{matrix}R1ntR2\Rightarrow Im=\dfrac{U}{R1+R2}\Rightarrow\dfrac{90}{R1+R2}=1\\R1//R2\Rightarrow Im=\dfrac{U}{\dfrac{R1.R2}{R1+R2}}=\dfrac{90\left(R1+R2\right)}{R1.R2}=4,5\\\\\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}R1+R2=90\\90\left(R1+R2\right)=4,5.R1R2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}R2=90-R1\\90\left(R1+90-R1\right)=4,5.R1\left(90-R1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}R2=90-60=30\Omega\\R2=90-30=60\Omega\end{matrix}\right.\\\left[{}\begin{matrix}R1=60\Omega\\R2=30\Omega\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left(R1;R2\right)=\left\{\left(30;60\right);\left(60;30\right)\right\}\)

\(14.\Rightarrow\left\{{}\begin{matrix}a,\Rightarrow Rtd=\dfrac{R1R2}{R1+R2}=\dfrac{2R2^2}{3R2}=\dfrac{U}{I}=\dfrac{48}{2}=24\Rightarrow\left\{{}\begin{matrix}R2=36\Omega\\R1=2.R2=72\Omega\end{matrix}\right.\\b,R1ntR2\Rightarrow U=I\left(R1+R2\right)=2\left(36+72\right)=216V\\\\\end{matrix}\right.\)

\(15.\Rightarrow\dfrac{1}{Rtd}=\dfrac{1}{\dfrac{U}{I}}=\dfrac{1}{\dfrac{60}{9}}=\dfrac{3}{20}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{R1}+\dfrac{1}{\dfrac{R1}{2}}+\dfrac{1}{\dfrac{R1}{3}}\Rightarrow\left\{{}\begin{matrix}R1=40\Omega\\R2=\dfrac{R1}{2}=20\Omega\\R3=\dfrac{R1}{3}=\dfrac{40}{3}\Omega\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}I1=\dfrac{U}{R1}=\dfrac{60}{40}=1,5A\\I2=\dfrac{U}{R2}=\dfrac{60}{20}=3A\\I3=\dfrac{U}{R3}=\dfrac{60}{\dfrac{40}{3}}=4,5A\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NG
22 tháng 10 2021 lúc 18:31

\(R_1ntR_2\)

a) \(R_{tđ}=R_{12}=R_1+R_2=10+15=25\Omega\)

b) \(I_1=I_2=I_m=\dfrac{U}{R_{tđ}}=\dfrac{7,5}{25}=0,3A\)

    \(\Rightarrow\left\{{}\begin{matrix}U_1=I_1\cdot R_1=0,3\cdot10=3V\\U_2=7,5-3=4,5V\end{matrix}\right.\)

c) Nếu mắc thêm R3=5Ω thì \(\left(R_1ntR_2\right)//R_3\)

    \(R=\dfrac{R_3\cdot R_{12}}{R_3+R_{12}}=\dfrac{5\cdot25}{5+25}=\dfrac{25}{6}\Omega\)

    \(I=\dfrac{7,5}{\dfrac{25}{6}}=1,8A\)

    \(U_3=U_{12}=U_m=7,5V\)

    \(\Rightarrow\) \(I_3=\dfrac{7,5}{5}=1,5A\) \(\Rightarrow I_1=I_2=I_{12}=1,8-1,5=0,3A\)

    

Bình luận (0)
TP
Xem chi tiết
MY
7 tháng 10 2021 lúc 19:16

\(\Rightarrow\left\{{}\begin{matrix}a,R1//\left(R2ntR3\right)\Rightarrow Rtd=\dfrac{R1\left(R2+R3\right)}{R1+R2+R3}=6\Omega\\b,\Rightarrow\left\{{}\begin{matrix}U=U1=U23=24V\Rightarrow I1=\dfrac{U1}{R1}=\dfrac{8}{3}A\\I2=I3=\dfrac{U23}{R2+R3}=\dfrac{4}{3}A\\U2=I2.R2=8V\\U3=U-U2=16V\end{matrix}\right.\\c,R1//\left(R2ntRx\right)\Rightarrow Im=1,5.\dfrac{24}{6}=6A\\\Rightarrow Rtd=\dfrac{R1\left(R2+Rx\right)}{R1+R2+Rx}=\dfrac{9\left(6+Rx\right)}{15+Rx}=\dfrac{24}{Im}=4\left(\Omega\right)\Rightarrow Rx=1,2\Omega\end{matrix}\right.\)

Bình luận (0)