Những câu hỏi liên quan
NH
Xem chi tiết
NU
22 tháng 11 2021 lúc 19:33

undefined

Bình luận (0)
NU
22 tháng 11 2021 lúc 19:33

Bạn tham khảo nhé

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 6 2018 lúc 2:30

Chứng minh EFGH là hình bình hành. Để EFGH là hình chữ nhật thì

Þ H E F ^ = 90 0 ⇒ H E ⊥   E F  

Þ AC ^BD.

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 9 2017 lúc 8:33

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong  ∆ ABD ta có:

E là trung điểm của AB (gt)

H là trung điểm của AD (gt)

nên EH là đường trung bình của  ∆ ABD

⇒ EH // BD và EH = 1/2 BD (tính chất đường trung bình của tam giác) (1)

- Trong  ∆ CBD ta có:

F là trung điểm của BC (gt)

G là trung điểm của CD (gt)

nên FG là đường trung bình của  ∆ CBD

⇒ FG // BD và FG = 1/2 BD (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: EH // FG và EH = FG

Suy ra: Tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Trong ∆ ABC ta có:

EF là đường trung bình

⇒ EF = 1/2 AC (tính chất đường trung bình của tam giác) (3)

AC = BD (tính chất hình thang cân) (4)

Từ (1), (3) và (4) suy ra: EH = EF

Vậy : Tứ giác EFGH là hình thoi.

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 5 2017 lúc 12:23

Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:

E H = F G = 1 2 B D   v à   H G = E F = 1 2 A C

Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.

Bình luận (0)
SK
Xem chi tiết
NH
30 tháng 6 2017 lúc 13:37

Hình thoi

Bình luận (0)
YN
Xem chi tiết
PB
Xem chi tiết
CT
12 tháng 12 2018 lúc 13:14

Vì E, F, G, H lần lượt là trung điểm các cạnh AB,BC,CD,DA nên EF, FG, GH, HE lần lượt là đường trung bình của tam giác ABC, BCD, ADC, ADB nên 

EF//HG (cùng song song với AC)

HE//FG (cùng song song với BD)

Suy ra tứ giác EFGH là hình bình hành

Mà  A C ⊥ B D (gt)   ⇒ E F ⊥ F G

Suy ra EFGH là hình chữ nhật

Do đó  S E F G H = H E . E F mà  E F = 1 2 A C ;  H E = 1 2 B D (tính chất đường trung bình)

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 3 2017 lúc 14:45

Vì E, F, G, H lần lượt là trung điểm các cạnh AB,BC,CD,DA nên EF, FG, GH, HE lần lượt là đường trung bình của tam giác ABC, BCD, ADC, ADB nên 

EF//HG (cùng song song với AC)

HE//FG (cùng song song với BD)

Suy ra tứ giác EFGH là hình bình hành

Mà  A C ⊥ B D (gt)   ⇒ E F ⊥ F G

Suy ra EFGH là hình chữ nhật

Do đó  S E F G H = H E . E F mà E F = 1 2 A C ; H E = 1 2 B D  (tính chất đường trung bình)

Đáp án D

Bình luận (0)
DT
Xem chi tiết
PD
Xem chi tiết
CH
23 tháng 8 2016 lúc 10:29

Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.

Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).

Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.

Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).

Khi đó ta có:

 \(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)

Vậy ta đã chứng minh xong bài toán.

Bình luận (0)
KV
24 tháng 9 2017 lúc 16:42

Cô ơi em ko hiểu.Theo em thì ta phải cm MN//=AC và PQ//=AC

Bình luận (0)