CHO TỨ GIÁC ABCD CÓ GÓC A=120 ĐỘ, GÓC B=100 ĐỘ; GÓC C - GÓC D= 20 ĐỘ. TÍNH GÓC C VÀ GÓC D
MN GIÚP MÌNH VỚI Ạ, CHIỀU NAY MÌNH PHẢI HỌC TOÁN RỒI
tứ giác ABCD có góc A = 120 độ, góc B = 100 độ, C-D = 20 độ
tính số đo góc C và D
A+B+C+D=360<=> C+D=360-(A+B)=140
Ta có hpt:
\(\hept{\begin{cases}C+D=140\\C-D=20\end{cases}\Leftrightarrow\hept{\begin{cases}C=80\\D=60\end{cases}}}\)
Cho tứ giác ABCD . có góc A = 50 độ , góc B bằng 60 độ , góc C = 120 độ , góc D = 130 độ . Chứng minh tứ giác ABCD là hình thang
Tứ giác ABCD có :
\(\widehat{A}+\widehat{C}=50+130=180^o\)
\(\widehat{B}+\widehat{D}=60+120=180^o\)
Vậy tứ giác ABCD là hình thang
Cho tứ giác ABCD có góc A+B=120 độ ; góc B+C=216 độ ; góc C+D= 150 độ . Tính số đo các góc ABCD
cho tứ giác ABCD CÓ góc A=80 độ,góc C=120 độ , góc D=50 độ tính góc B
1. Cho tứ giác ABCD có góc B= 120 độ, góc C= 50 độ, góc D= 90 độ. Tính góc A và góc ngoài của góc A
2. chó tứ giác ABCD biết chu vi tam giác ABD= 68cm, tam giácBCD= 40cm,chu vi tứ giác ABCD= 54cm. Tính độ dài đường chéo BD
3. Chứng minh rằng các góc của 1 tứ giác không thể đều là góc nhọn, không đều là góc tù
4. Cho tứ giác ABCD có AB= BC, BD=CA
a) Chứng minh BD là đường trung trực của AC
b) góc B= 120 độ, góc D= 80 độ.Tính góc A, góc C
4: Sửa đề: DA=DC
a: BA=BC
DA=DC
=>BD là trung trực của AC
b: góc A+góc C=360-120-80=160 độ
Xét ΔBAD và ΔBCD có
BA=BD
AD=CD
BD chung
=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=160/2=80 độ
3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được
cho tứ giác ABCD có góc A = 130 độ , góc B = 90 độ , góc ngoài tại đỉnh C = 120 độ . Tính góc D ?
Ta có :
\(\widehat{BCD}+120^o=180^o\)( kề bù )
\(\widehat{BCD}=180^o-120^o\)
\(\widehat{BCD}=60^o\)
Tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(130^o+90^o+60^o+\widehat{D}=360^o\)
\(280^o+\widehat{D}=360^o\)
\(\widehat{D}=360^o-280^o\)
\(\widehat{D}=80^o\)
bạn có thể vẽ hình giúp mình được k
cho tứ giác ABCD , có góc A = 130 độ , góc B =90 độ , góc ngoài tại đỉnh C= 120 độ . tính góc D
Cho tứ giác ABCD, góc A= 100 độ, góc B=120 độ . Các tia phân giác của góc C và góc D cắt nhau tại E. Các tia phân giác của các góc ngoài tại C và D cắt nhau tại F. Tính các góc của tứ giác DECF.
Xét Tứ giác ABCD có: góc A + B + C + D = 360o => 100o + 120o + (C + D) = 360o => góc C + D = 140o
DE; CE lần lượt là p/g của góc D; C => góc D1 = D/ 2 ; C1 = C/ 2 => góc (D1 + C1) = (D + C) /2 = 700
Xét tam giác DEC có: góc D1 + góc E + góc C1 = 180o => góc DEC = 180o - (D1 + C1) = 180o - 70o = 110o
Vì tia Dx là p/g ngoài của góc D; DE là p/g trong của góc D => Dx vuông góc với DE => DF vuông góc với DE => góc EDF = 900
=> góc D2 = 90o - D1
Vì tia Cy là p/g ngoài của góc ACD ; CE là p/g trong của góc ACD => Cy vuông góc với CE => CF vuông góc với CE => góc ECF = 90o
=> góc C2 = 90o - C1
Xét tam giác CDF có: góc C2 + góc CFD + góc D2 = 180o
=> góc CFD + (90o - D1 + 90o - C1) = 180o => góc CFD + 180o - (D1 + C1) = 180o => góc CFD = D1 + C1 = 90o
Cho tứ giác ABCD có A=130 độ, B=90 độ, góc ngoài đỉnh C=120 độ .Tính góc D
Ta có : \(^{\widehat{C_1}+\widehat{C_2}=180^o}\)(hai góc kề bù)
Mà \(\widehat{C_2}=120^o\)(gt)
Suy ra : \(\widehat{C_1}=180^o-120^o=60^o\)
Lại có : \(\widehat{A}+\widehat{B}+\widehat{C_1}+\widehat{D}=360^o\) (tổng bốn góc trong 1 tứ giác)
Mà \(\widehat{A}=130^o;\widehat{B}=90^o;\widehat{C}=60^o\)
Nên : \(\widehat{D}=360^o-130^o-90^o-60^o=80^o\)