Những câu hỏi liên quan
H24
Xem chi tiết
CL
Xem chi tiết
IY
17 tháng 10 2020 lúc 20:38

đầu bài chỗ " đường chéo BD cắt AE" chắc là " đường chéo BD cắt AI" phải không bn???

a) ta có: AB = CD ( ABCD là h.b.h)

=> AK = IC \(\left(=\frac{1}{2}AB=\frac{1}{2}CD\right)\)

mà AK // IC

=> AKCI là hình bình hành ( dấu hiệu)

xét \(\Delta DFC\)

có: DI =IC (gt)

EI // FC ( AKCI là h.b.h)

=> EI là đường trung bình của \(\Delta DFC\)

=> DE = EF ( t/c')

cmtt với \(\Delta AEB\)ta có: EF = FB

=> DE=EF=FB

b) xét \(\Delta ABD\)

có: AM=MD

AK=KB

=> KM là đường trung bình của \(\Delta ABD\)

=> KM // BD và \(KM=\frac{1}{2}BD\)

cmtt với \(\Delta BCD\)ta có: IN//BD và \(IN=\frac{1}{2}BD\)

=> KM // IN (//BD)

\(KM=IN\left(=\frac{1}{2}BD\right)\)

=> KMIN là hình bình hành ( dấu hiệu)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
22 tháng 12 2019 lúc 18:28

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ EOM và  ∆ FON có: ∠ (MEO) =  ∠ (NFO) (so le trong do DE//BF)

OE = OF (tính chất hình bình hành)

∠ (MOE)=  ∠ (NOF) (đối đỉnh )

Suy ra:  ∆ EOM =  ∆ FON (g.c.g) ⇒ OM = ON

Vậy tứ giác EMFN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường).

Bình luận (0)
AV
Xem chi tiết
LH
4 tháng 10 2016 lúc 18:01

Duyệt quài 

Bình luận (0)
PH
4 tháng 10 2016 lúc 20:52

Trần Thùy Dung chữ xấu quá

Bình luận (0)
MD
3 tháng 11 2016 lúc 22:10

 bài chưa đủ thiếu nhiều

Bình luận (0)
LB
Xem chi tiết
ND
16 tháng 11 2019 lúc 19:31

Ta có:

E là trung điểm của AD (gt), F là trung điểm của BC (gt) nên EF là đường trung bình của hình thang ABCD.

\(\Rightarrow\) EF // CD hay EF // CH.

\(\Delta\)AHD vuông tại H có HE là đường trung tuyến thuộc cạnh huyền AD.

Ta có: HE = ED = \(\frac{1}{2}\) AD (tính chất tam giác vuông)

\(\Rightarrow\Delta\) EDH cân tại E \(\Rightarrow\widehat{D}\)\(\widehat{H}\) 1(tính chất tam giác cân)

\(\widehat{D}\)=\(\widehat{C}\)(vì ABCD là hình thang cân)

\(\Rightarrow\)\(\widehat{H}\)= \(\widehat{C}\)\(\Rightarrow\) EH // CF (vì có cặp góc đồng vị bằng nhau)

Vậy tứ giác EFCH là hình bình hành.

#Trang

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
23 tháng 11 2019 lúc 6:38

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

*Có AH ⊥ CD ⇒ ∆ AHD vuông tại H

E là trung điểm của AD ⇒ HE là trung tuyến ứng với cạnh huyền AD

⇒ HE = 1/2 AD (1)

*F là trung điểm của BC ⇒ CF = 1/2 BC (2)

Mà ABCD là hình thang cân ⇒ BC = AD (3)

Từ (1), (2) và (3) ta có: HE = CF (*)

*Mặt khác: EH = ED = 1/2 AD (Chứng minh trên)

⇒  ∆ EHD cân tại E

⇒ ∠ (EHD) =  ∠ (EDH)

Mà  ∠ (EDH) =  ∠ (FCH) (góc đáy hình thang cân)

⇒  ∠ (FCH) =  ∠ (EHD) (cùng bằng  ∠ (EDH))

⇒EH // FC (2 góc ở vị trí đồng vị bằng nhau) (**)

Từ (*) và (**) ⇒ EFCH là hình bình hành (1 cặp cạnh song song và bằng nhau)

Bình luận (0)
KY
Xem chi tiết
SK
Xem chi tiết
NH
30 tháng 6 2017 lúc 11:14

Hình chữ nhật

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 10 2018 lúc 18:21

Chứng minh AECF là hình bình hành có 2đường chéo vuông góc với nhau có 4 cạnh bằng nhau.

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 4 2017 lúc 8:51

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: Hình chữ nhật EMFN là hình thoi ⇒ ME = MF

ME = 1/2 DE (tính chất hình thoi)

MF = 1/2 AF (tính chất hình thoi)

Suy ra: DE = AF

⇒ Tứ giác AEFD là hình vuông (vì hình thoi có 2 đường chéo bằng nhau)

⇒ ∠ A = 90 0  ⇒ Hình bình hành ABCD là hình chữ nhật.

Ngược lại: ABCD là hình chữ nhật ⇒  ∠ A =  90 0

Hình thoi AEFD có A =  90 0  nên AEFD là hình vuông

⇒ AF = DE ⇒ ME = MF (tính chất hình vuông)

Hình chữ nhật EMFN là hình vuông (vì có 2 cạnh kề bằng nhau)

Vậy hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật có AB = 2AD.

Bình luận (0)