Cho ∆CDE có 3 góc nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H trên CD; CE. a/ Chứng minh : CD. CM = CE. CN b/ Chứng minh ∆CMN đồng dạng với ∆CED.
Bài 1: Cho ∆MNP vuông tại M; đường cao MI. Biết và MI = 9,8cm a/ Tính MN; MP; NP b/ Tính diện tích tam giác MIP Bài 2: Cho ∆CDE có 3 góc nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H trên CD; CE. a/ Chứng minh : CD. CM = CE. CN b/ Chứng minh ∆CMN đồng dạng với ∆CED.
Cho tam giác CDE nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của CD, CE. Chứng minh:
a, CD. CM = CE. CN
b, Tam giác CMN đồng dạng với tam giác CED
a, Áp dụng hệ thức về cạnh góc vuông và hình chiếu lên cạnh huyền trong các tam giác vuông HCD và HCE ta có CD.CM = CE.CN (= C H 2 )
b, Sử dụng a) để suy ra các tỉ lệ về cạnh bằng nhau. Từ đó chứng minh được ∆ CMN:CDE(c-g-c)
Cho tam giác CDE nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu
của H lên CD, CE. Chứng minh:
a. CD.CM = CE.CN.
b. Tam giác CMN đồng dạng với tam giác CED.
a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD, ta được:
\(CD\cdot CM=CH^2\left(1\right)\)
Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE, ta được:
\(CE\cdot CN=CH^2\left(2\right)\)
Từ (1) và (2) suy ra \(CD\cdot CM=CE\cdot CN\)
cho△CDE nhọn đường cao CH.gọi M,Ntheo thứ tự là hình chiếu của H lên CD,CE cm:
a)CP.CM=CE.CN
B)△AMN∼△CED
a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD
nên \(CM\cdot CD=CH^2\left(1\right)\)
Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE
nên \(CN\cdot CE=CH^2\left(2\right)\)
Từ (1) và (2) suy ra \(CM\cdot CD=CN\cdot CE\)
Cho tam giác CDE nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H lên CD, CE. Chứng minh:
a, CD.CM=CE.CN
b, Tam giác CMN đồng dạng với tâm giác CED.
Tạm giác CDE nhọn đường cao CH gọi M và N là hình chiếu của H trên CD,CE
a) cm : CD.CM=CE.CN
b)cm tam giác CMN đồng dạng tam giác CED
cho tam giác ABC có 3 góc nhọn , các đường cao BD , CE. gọi H , K theo thứ tự là hình chiếu của B và C trên ED . CM:
SBEC+SBDC=SBHCK
Giải giúp mình nha.Cảm ơn
cho tam giac ABC có 3 góc nhọn , vẽ các đường cao AD , CE , gọi H, K theo thứ tự là hình chiếu của B và C trên đường thẩng ED. cm
a) EH=DK
Cho nửa đường tròn tâm O đường kính AB, dây CD có độ dài không đổi và khác AB. Gọi I là hình chiếu vuông góc của O trên CD; H,K theo thứ tự là hình chiếu vuông góc của A,B trên CD
a) Chứng minh I là trung điểm HK
b) Gọi E là hình chiếu vuông góc của I trên AB. Chứng minh rằng Sacb + Sadb = IE.AB
c) Tìm vị trí dây CD để diện tích AHKB lớn nhất
cứu mình với huuhhu
a) Ta thấy OI//AH//BK \(\left(\perp CD\right)\).
Xét hình thang ABKH (AH//BK), O là trung điểm AB. OI//AH \(\left(I\in HK\right)\) nên I là trung điểm HK.
b) Hạ \(CP\perp AB\) tại P, \(DQ\perp AB\) tại Q. Khi đó IE//CP//DQ \(\left(\perp AB\right)\).
Xét hình thang CDQP (CP//DQ) có I là trung điểm CD (hiển nhiên), IE//CP và \(E\in PQ\) nên IE là đường trung bình của hình thang CDQP \(\Rightarrow IE=\dfrac{CP+DQ}{2}\)
Lại có \(S_{ACB}=\dfrac{1}{2}AB.CP\), \(S_{ADB}=\dfrac{1}{2}.AB.DQ\)
\(\Rightarrow S_{ACB}+S_{ADB}=AB.\dfrac{CP+DQ}{2}=AB.IE\) (đpcm)
c) Ta có \(S_{AHKB}=\dfrac{AH+BK}{2}.HK=OI.HK\)
Do dây CD có độ dài không đổi nên khoảng cách từ O đến dây CD là OI cũng không đổi. Như vậy ta chỉ cần tìm vị trí của C để HK lớn nhất.
Thật vậy, dựng hình bình hành ABLH. Khi đó vì BK//AH nên \(L\in BK\). Đồng thời ta luôn có \(HK\le HL=AB\), suy ra \(S_{AHKB}\le OI.AB\).
Dấu "=" xảy ra \(\Leftrightarrow HK=HL\) \(\Leftrightarrow K\equiv L\) \(\Leftrightarrow\) AHKB là hình bình hành \(\Leftrightarrow\) HK//AB hay CD//AB \(\Rightarrow OI\perp AB\). Vậy C là điểm sao cho \(OI\perp AB\).
(Nếu muốn tìm cụ thể vị trí của C, thì mình nói luôn nó là điểm C sao cho \(sđ\stackrel\frown{AC}=180^o-2arc\cos\left(\dfrac{CD}{AB}\right)\) nhé. Chứng minh cái này dễ, mình nhường lại cho bạn.)
Chỗ vị trí C mình sửa lại là \(sđ\stackrel\frown{AC}=90^o-arc\sin\dfrac{CD}{AB}\) nhé.
a) Để chứng minh I là trung điểm HK, ta có thể sử dụng tính chất của tam giác vuông. Vì O là tâm của nửa đường tròn, nên IO vuông góc với CD. Tương tự, AI và BI cũng vuông góc với CD. Do đó, ta có tam giác IOA và tam giác IOB là tam giác vuông cân. Vì vậy, ta có AI = IB và IO = IO. Từ đó, ta có thể kết luận rằng I là trung điểm HK.
b) Để chứng minh rằng Sacb + Sadb = IE.AB, ta có thể sử dụng tính chất của tam giác vuông. Vì O là tâm của nửa đường tròn, nên IO vuông góc với CD. Tương tự, AI và BI cũng vuông góc với CD. Do đó, ta có tam giác IOA và tam giác IOB là tam giác vuông cân. Vì vậy, ta có AI = IB và IO = IO. Từ đó, ta có thể kết luận rằng Sacb + Sadb = IE.AB.
c) Để tìm vị trí dây CD để diện tích AHKB lớn nhất, ta cần xác định vị trí của I trên CD. Khi I là trung điểm HK, diện tích AHKB sẽ đạt giá trị lớn nhất