Những câu hỏi liên quan
EC
Xem chi tiết
TH
7 tháng 10 2020 lúc 20:37

a, Ta có (x+2)2≥0(x+2)2≥0

⇒(x+2)2+5≥5⇒(x+2)2+5≥5

⇒30(x+2)2+5≤305=6⇒30(x+2)2+5≤305=6

Hay A≤6A≤6

Dấu = xảy ra ⇔(x+2)2=0⇔x+2=0⇔x=−2⇔(x+2)2=0⇔x+2=0⇔x=−2

b,

Ta có (x−3)2≥0(x−3)2≥0

⇒(x−3)2+4≥4⇒(x−3)2+4≥4

⇒20(x+2)2+5≤204=5⇒20(x+2)2+5≤204=5

Hay A≤5A≤5

Dấu = xảy ra ⇔(x−3)2=0⇔x−3=0⇔x=3⇔(x−3)2=0⇔x−3=0⇔x=3

c,

Ta có (x+1)2≥0(x+1)2≥0

⇒(x+1)2+2≥2⇒(x+1)2+2≥2

⇒10(x+1)2+2≤102=5⇒10(x+1)2+2≤102=5

Hay A≤5A≤5

Dấu = xảy ra ⇔(x+1)2=0⇔x+1=0⇔x=−1⇔(x+1)2=0⇔x+1=0⇔x=−1

Bình luận (0)
 Khách vãng lai đã xóa
LD
7 tháng 10 2020 lúc 20:47

A = | 5x + 2 | + 5| x + 1 | 

= | 5x + 2 | + | 5x + 5 |

= | 5x + 2 | + | -( 5x + 5 ) |

= | 5x + 2 | + | -5x - 5 |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

A = | 5x + 2 | + | -5x - 5 | ≥ | 5x + 2 - 5x - 5 | = | -3 | = 3

Dấu "=" xảy ra khi ab ≥ 0

=> ( 5x + 2 )( -5x - 5 ) ≥ 0

1. \(\hept{\begin{cases}5x+2\ge0\\-5x-5\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}5x\ge-2\\-5x\ge5\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{2}{5}\\x\le-1\end{cases}}\)( loại )

2. \(\hept{\begin{cases}5x+2\le0\\-5x-5\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}5x\le-2\\-5x\le5\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\frac{2}{5}\\x\ge-1\end{cases}}\Leftrightarrow-1\le x\le-\frac{2}{5}\)

=> MinA = 3 <=> \(-1\le x\le-\frac{2}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AH
4 tháng 7 2021 lúc 12:58

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

Bình luận (0)
AH
4 tháng 7 2021 lúc 12:59

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

Bình luận (0)
AH
4 tháng 7 2021 lúc 13:03

Vì $2-x\geq 0$ (theo ĐKXĐ) nên $C=1+\sqrt{2-x}\geq 1$

Vậy $C_{\min}=1$. Giá trị này đạt tại $2-x=0\Leftrightarrow x=2$

Bình luận (0)
NH
Xem chi tiết
H9
25 tháng 1 2024 lúc 7:27

\(H=\dfrac{x^2-6x+1}{x^2+1}=\dfrac{4x^2+4-3x^2-6x-3}{x^2+1}\)

\(=\dfrac{4\left(x^2+1\right)-3\left(x^2+2x+1\right)}{x^2+1}=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\)

Ta có: \(\dfrac{3\left(x+1\right)^2}{x^2+1}\ge0\forall x\Rightarrow H=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\le4\forall x\)

\(\Rightarrow H_{max}=4\Leftrightarrow x+1=0\Leftrightarrow x=-1\)  

Bình luận (0)
TH
Xem chi tiết
LL
Xem chi tiết
NT
7 tháng 8 2020 lúc 20:59

Địt con cụ

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 8 2020 lúc 21:00

Dễ thấy x càng lớn thì A càng lớn

vậy ko có Max

Tìm Min \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2020\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2020\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2020\)

Đặt \(x^2+5x=a\)

\(\Rightarrow A=\left(a-6\right)\left(a+6\right)+2020\)

\(=a^2-6a+6a-36+2020\)

\(=a^2+1984\ge1984\left(a^2\ge0\right)\)

Vậy Min A = 1984 

Dấu "=" xảy ra khi \(a=0\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
LK
7 tháng 8 2020 lúc 21:09

nguoif bí ẩn ko có tên ko đc nói bậy

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NH
Xem chi tiết
AH
26 tháng 1 2024 lúc 18:58

Lời giải:

$G=\frac{x^2+x+2}{2x^2-2x+3}$

$\Rightarrow G(2x^2-2x+3)=x^2+x+2$
$\Leftrightarrow x^2(2G-1)-x(2G+1)+(3G-2)=0(*)$

Vì $G$ tồn tại nên dấu "=" tồn tại, điều này có nghĩa là $(*)$ luôn có nghiệm.

$\Rightarrow \Delta=(2G+1)^2-4(2G-1)(3G-2)\geq 0$

$\Leftrightarrow -20G^2+32G-7\geq 0$

$\Leftrightarrow 20G^2-32G+7\leq 0$

$\Leftrightarrow \frac{16+\sqrt{116}}{20}\geq G\geq \frac{16-\sqrt{116}}{20}$

Vậy....

Bình luận (0)
VD
Xem chi tiết
H24
Xem chi tiết
DH
23 tháng 12 2017 lúc 21:47

a) MIN : \(y=\frac{\frac{1}{3}x^2+\frac{1}{3}x+\frac{1}{3}+\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2+x+1}=\frac{\frac{1}{3}\left(x^2+x+1\right)+\frac{2}{3}\left(x^2-2x+1\right)}{x^2+x+1}\)

\(=\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\)

MAX : \(y=\frac{3x^2+3x+3-2x^2-4x-2}{x^2+x+1}=\frac{3\left(x^2+x+1\right)-2\left(x^2+2x+1\right)}{x^2+x+1}\)

\(=3-\frac{2\left(x+1\right)^2}{x^2+x+1}\le3\)

b ) tương tự

Bình luận (0)
H24
25 tháng 12 2017 lúc 17:42

bạn ơi giải như thế không đúng vs lại dấu bằng không xảy ra

Bình luận (0)
DH
25 tháng 12 2017 lúc 18:27

Đến bước đấy rồi mà ko tự suy luận ra dấu "=" xảy ra àk

MIN : Dấu = xảy ra tại x = 1

MAX : Dấu = xảy ra tại x= -1

Bình luận (0)