Bài 1 cho hình thang ABCD (AB//CD), Gọi M, N, P lần lượt là trung điểm của AD; BC; BD
a)Chứng minh M, N, P thẳng hàng
b)gọi K là giao điểm của AC và MN. Chứng minh K là trung điểm AC
c) chứng minh PK = (CD-AB):2
Cho hình thang ABCD, đáy CD>AB. Gọi M,N lần lượt là trung điểm của AB và CD. Gọi P là giao điểm của AD và BC. Chứng Minh rằng M,N,P thẳng hàng
cho hình thang abcd (ab//cd, ab<cd). Gọi m,n lần lượt là trung điểm của ad,cb. Gọi E,F là giao điểm của MN với BD và AC. Chứng minh EF = 1/2(DC-AB)
Bài 1. Cho tứ giác ABCD . Gọi M, N lần lượt là trung điểm của AB , CD . Biết MN = \(\frac{AD+DE}{2}\). Chứng minh tứ giác ABCD là hình thang .
Trên ta BN lấy điểm E sao cho N là trung điểm của BE .
\(\Delta NBC\)và \(\Delta NED\) có :
NC = ND ( gt )
\(\widehat{BNC}=\widehat{DNE}\)( hai góc đối đỉnh )
NB = NE ( theo cách vẽ ) .
Do đó \(\Delta NBC=\Delta NED\)( c.g.c ) , suy ra DE = BC .
Theo giả thiết MN = \(\frac{AD+BC}{2}\), vì thế suy ra MN = \(\frac{AD+DE}{2}\) (1)
Mặt khác trong tam giác ABE thì MN là đường trung bình của tam giá đó nên MN = \(\frac{AE}{2}\). (2)
Từ (1) và (2) suy ra : AE = AD + DE . Đẳng thức này chỉ xảy ra khi ba điểm A,D,E thẳng hàng .
Lại do \(\Delta NBC\)= \(\Delta NED\)nên \(\widehat{BCD}=\widehat{EDC}\)do đó DE // BC ( hai góc ở vị trí so le trong bằng nhau ) , từ đó suy ra AD // BC.
Vậy tứ giác ABCD là hình thang ( đpcm ).
Bài 1 cho tứ giác ABCD, P,Q lần lượt là trung điểm của AD và BC,a chứng minh PQ hoặc AB AC 2,b tứ giác ABCD là hình thang PQ AB CD 2. Bài 2 cho hình thang ABCD, AB đáy lớn. M ,N,P,Q lần lượt là trung điểm của AD BC AC BD.a chứng Minh M N P Q thẳng hàng.b Cho AB a CD b với a b. Tính MN PQ.c Cm rằng nếu MP PQ QN thì a 2b
cho hình thang ABCD (AB//CD,AB<CD). Gọi M,N lần lượt là trung điểm của AD,CB. Gọi E,F là giao điểm của MN với BD và AC. Chứng minh EF=1/2(DC-AB)
Cho hình thang ABCD ( AB // CD). Gọi M, N, P, Q lần lượt là trung điểm của AD, BC, BD, AC. CMR bốn điểm M, N, P, Q thẳng hàng.
Xét ΔDAB có
M là trung điểm của AD
P là trung điểm của BD
Do đó: MP là đường trung bình của ΔDAB
Suy ra: MP//AB
Xét ΔADC có
Q là trung điểm của AC
M là trung điểm của AD
Do đó: QM là đường trung bình của ΔADC
Suy ra: QM//DC
hay QM//AB
Xét ΔACB có
N là trung điểm của BC
Q là trung điểm của AC
Do đó: NQ là đường trung bình của ΔACB
Suy ra: NQ//AB
Ta có: NQ//AB
QM//AB
mà NQ và QM có điểm chung là Q
nên N,Q,M thẳng hàng(1)
Ta có: MP//AB
MQ//AB
mà MP và MQ có điểm chung là M
nên M,P,Q thẳng hàng(2)
Từ (1) và (2) suy ra M,N,P,Q thẳng hàng
Bài 8 : Cho hình thang ABCD (AB//CD) có CD = 2AB. Gọi M, N, I lần lượt là trung điểm của AD, BC, DC. Gọi K là giao điểm của MN và AC. a/ Chứng minh K là trung điểm của AC. b/ Chứng minh AB = MK. c/ Chứng minh B, K, I thẳng hàng.
CÁC BẠN GIÚP MÌNH VỚI
bài 1: cho hình thang abcd có ab // cd , ab=bc .
a,CM : ca là tia phân giác của góc bcd
b,gọi m,n,e,f lần lượt là trung điểm của ad,bc,ca,bd. CM m,n,e,f thẳng hàng
bài 2 cho tứ giác abcd có ac vuông góc với bd gọi m,n,l lần lượt là trung điểm của ab,ad,ac . từ m kẻ đường thẳng vuông góc với cd cắt ac tại h .
CM : h là t.tâm tam giác mnl
cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm của của AD và BC. CMR nếu MN=(AB+CD):2 thì ABCD là hình thang cân