Tính giá trị biểu thức biết:
A= 2018/1+2017/2+2016/3+.....+1/2018 ; B= 1/2+1/3+1/4+.....+1/2019
Tính A:B
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
hình như cái này đâu phải toán lớp 5 đâu bạn
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
1. Cho biểu thức B :
\(B=x^{2017}-2018.x^{2016}+2018.x^{2015}-2018.x^{2014}+...-2018.x^2+2018.x-1\)
TÍNH GIÁ TRỊ BIỂU THỨC VỚI x=2017
1. Cho biểu thức B :
\(B=x^{2017}-2018.x^{2016}+2018.x^{2015}-2018.x^{2014}+...-2018.x^2+2018.x-1\)
TÍNH GIÁ TRỊ BIỂU THỨC VỚI x=2017
3. Cho : \(\frac{xy+1}{9}=\frac{yz+2}{15}=\frac{xz+3}{27}\)và xy +yz + zx=11 . TÌM x,y,z
tính giá trị biểu thức B= 2018 + 2018/1+2 +....+ 2018/1+2+3+..+2017
tính giá trị của biểu thức M= (x+y)^2016 + (x-2)^2017 + (y+1)^2018
Câu 1. Tính hợp lý giá trị các biểu thức sau :
a. A = ( 689 - 31 ) - ( 269 - 131 )
b. B = \(\left(\frac{1}{2}+\frac{2016}{2017}+\frac{2017}{2018}+1\right)\times\left(\frac{2016}{2017}+\frac{2017}{2018}+\frac{3}{4}\right)-\left(\frac{1}{2}+\frac{2016}{2017}+\frac{2017}{2018}\right)\times\left(\frac{2016}{2017}+\frac{2017}{2018}+\frac{3}{4}+1\right)\)c. C = \(1-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
Tính giá trị của biểu thức: \(A=\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)
Đặt \(2017=a\)
\(A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2a+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2\left(a+1\right)\cdot\dfrac{a}{a+1}+\left(\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\left|a+1-\dfrac{a}{a+1}\right|+\dfrac{a}{a+1}\)
Ta có \(\dfrac{a}{a+1}< 1\Leftrightarrow a+1-\dfrac{a}{a+1}>0\)
\(\Leftrightarrow A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2018\)
cho a^2+b^2+c^2=ab+bc+ac
Tính giá trị biểu thức (a-b+1)^2018+(b-c-1)^2017+(a-c)^2016
\(a^2+b^2+c^2=ab+bc+ac\)
\(a^2+b^2+c^2-ab-bc-ac=0\)
\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)
\(\Rightarrow\left(a-b+1\right)^{2018}+\left(b-c-1\right)^{2017}+\left(a-c\right)^{2016}\)
\(=\left(a-a+1\right)^{2018}+\left(c-c-1\right)^{2017}+\left(a-a\right)^{2016}\)
\(=1^{2018}+\left(-1\right)^{2017}+0^{2016}\)
\(=1+\left(-1\right)+0\)
\(=0\)
Vậy......
P.s: các phần thay a=b=c vào biểu thức có thể thay toàn bộ bằng a hoặc bằng b hoặc bằng c đều được nha