BÀI TẬP:so sánh
a. A=\(\frac{5^{17}+1}{5^{19}+2}\) ; B=\(\frac{5^{20}+1}{5^{22}+1}\)
b.A=\(\frac{10^{14}+1}{10^{15}+1}\); B=\(\frac{10^{15}+1}{10^{16}+1}\)
Bài tập:so sánh
a. \(2\sqrt{3}\) và \(3\sqrt{2}\)
b. \(2\sqrt{3}+1\)và 4
c.\(\sqrt{2015}-\sqrt{2014}\) và \(\sqrt{2014}-\sqrt{2013}\)
a) Ta có: \(2\sqrt{3}=\sqrt{4\cdot3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{9\cdot2}=\sqrt{18}\)
mà \(\sqrt{12}< \sqrt{18}\)(vì 12<18)
nên \(2\sqrt{3}< 3\sqrt{2}\)
b) Ta có: \(\left(2\sqrt{3}+1\right)^2=8+4\sqrt{3}+1=9+4\sqrt{3}\)
\(4^2=16=9+7\)
mà \(4\sqrt{3}< 7\left(\sqrt{48}< \sqrt{49}\right)\)
nên \(\left(2\sqrt{3}+1\right)^2< 4^2\)
hay \(2\sqrt{3}+1< 4\)
c) Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
\(\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)
Ta có: \(\sqrt{2015}+\sqrt{2014}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2015}+\sqrt{2014}}< \dfrac{1}{\sqrt{2013}+\sqrt{2014}}\)
hay \(\sqrt{2015}-\sqrt{2014}< \sqrt{2014}-\sqrt{2013}\)
\(a\))Ta có:\(2\sqrt{3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{18}\)
Vì \(\sqrt{12}< \sqrt{18}\)
⇒\(2\sqrt{3}< 3\sqrt{2}\)
\(b\))Ta có:\(2\sqrt{3}+1=\sqrt{12}+1\)
\(4=3+1=\sqrt{9}+1\)
Vì \(\sqrt{12}+1>\sqrt{9}+1\)
⇒\(2\sqrt{3}+1>4\)
Help meeeee. E đang cần gấp.
So sánh
A=17^18+1/17^19 và B=17^17+1/17^18+1
A=(17^18+1)/(17^19+1)
17A=17(17^18+1)/17^19+1=17^19+17/17^19+1
17A=(17^19+1)+16/(17^19+1)=1+16/17^19+1
B=(17^17+1)/(17^18+1)
17B=17(17^17+1)/17^18+1=17^18+17/17^18+1
17B=(17^18+1)+16/(17^18+1)=1+16/17^18+1
Từ (1) và (2)⇒1+16/17^19+1<1+16/17^18+1
=> 17A<17B
Hay A<B
Vậy A<B
Bài 1: tính nhanh
a)\(6\frac{4}{5}-\left(1\frac{2}{3}+3\frac{4}{5}\right)\)
b)\(\left(\frac{-4}{5}+\frac{4}{3}\right)+\left(\frac{-5}{4}+\frac{14}{5}\right)-\frac{7}{3}\)
c)\(\frac{8}{3}.\frac{2}{5}.\frac{3}{8}.10\frac{19}{92}\)
d)\(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{14}+1\frac{5}{7}\)
e)\(\frac{12}{19}.\frac{7}{15}.\frac{-13}{17}.\frac{19}{12}.\frac{17}{13}\)
so sánh
a)A=\(\dfrac{17^{18}+1}{17^{19}+1}\)và B=\(\dfrac{17^{17}+1}{17^{18}+1}\)
b)C=\(\dfrac{2^{2020}-1}{2^{2021}-1}\)và D=\(\dfrac{2^{2021}-1}{2^{2022}-1}\)
c)\(\dfrac{13579}{34567}\)và \(\dfrac{13580}{34569}\)
Giúp mình với nhé😌
a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà 17^19+1>17^18+1
nên A<B
b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)
\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)
2^2021-1<2^2022-1
=>1/2^2021-1>1/2^2022-1
=>-1/2^2021-1<-1/2^2022-1
=>C<D
(Thêm một bài nữa này) Tính giá trị của biểu thức:
\(A=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}.\)
A = \(-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
A = \(-1\frac{1}{5}.\)4 : \(\frac{4.\left(1-\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5.\left(1-\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
A = \(-1\frac{1}{5}.4\): \(\frac{4}{5}\)= \(\frac{-6}{5}\).4. \(\frac{5}{4}\)
A = \(\frac{-24}{5}.\frac{5}{4}\)=\(\frac{\left(-6\right).1}{1.1}\)= -6.
\(A=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
\(=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
\(=-1\frac{1}{5}.\frac{4}{1}:\frac{4}{5}\)
\(=-1\frac{1}{5}.\frac{4}{1}.\frac{5}{4}\)
\(=-1\)
Bài 1: So sánh lũy thừa
a) 125^80 và 25^125
b) 31^11 và 17^14
c) \(A=\frac{19^{30}+5}{19^{31}+5}vàB=\frac{19^{31+5}}{19^{32}+5}\)
d)\(A=\frac{2^{18}-3}{2^{20}-3}vàB=\frac{2^{20-3}}{2^{22}-3}\)
e) \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}vàB=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
Bài 2: Cho \(A=1+2+2^2+...+2^{30}\)
Viết A+1 dưới dạng lũy thừa
2) A=1+2+22+...+230=>2A=2+22+23+...+231
=>2A-A=A=(2+22+...+231)-(1+2+22+...+230)=231-1
=>A+1=(231-1)+1=231-(1-1)=231-0=231
lm xog chc'..............................................ặc ặc
\(\frac{\frac{4}{17}+\frac{4}{19}-\frac{4}{2111}}{\frac{5}{17}+\frac{5}{19}-\frac{5}{2111}}-\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}}{\frac{-5}{123}+\frac{5}{19}-\frac{5}{371}+1}\)
\(\frac{\frac{4}{17}+\frac{4}{19}-\frac{4}{2111}}{\frac{5}{17}+\frac{5}{19}-\frac{5}{2111}}-\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}}{-\frac{5}{123}+\frac{5}{19}-\frac{5}{371}+1}\)
\(=\frac{4.\left(\frac{1}{17}+\frac{1}{19}-\frac{1}{2111}\right)}{5.\left(\frac{1}{17}+\frac{1}{19}-\frac{1}{2111}\right)}+\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}}{5.\left(\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}\right)}=\frac{4}{5}+\frac{1}{5}=1\)
Cho tam giác ABC có đường cao AD .Gọi E là trung điểm của AB .F đối xứng vs D qua E c/m AB = DF
Bài 1: Cặp phân số sau có bằng nhau không?
a) -4/3 và 12/9
b) -2/3 và -6/8
Bài 2: Tìm x,y biết
a)x/-3=2/y
b) x/-9=-8/y=-10/15
Bài 3: Rút gọn
a) -24/78
b)19.25/28.95
c) 19-19.8/8-27
Bài 4: So sánh
a) -2/3 và 5/-8
b) 398/-412 và -25/-137
c) -14/21 và 60/72
Bài 5: a) Cho A= 5/n-3 Tìm điều kiện của n để A là phân số
b) Cho B= 2n+7/n+3
Tìm giá trị của n để B là sô nguyên
1:
a: Vì \(\dfrac{-4}{3}=\dfrac{-4\cdot3}{3\cdot3}=\dfrac{-12}{9}=\dfrac{12}{9}\\ \Rightarrow\dfrac{-4}{3}=\dfrac{12}{9}\)
b: Vì : \(-2\cdot3=-6\\ -6\cdot8=-48\)
nên 2 p/s ko bằng nhau
so sánhA và B
A=17^18+5^2+2013 và B=16^17+2^5+1990
các bạn ghi cách làm ra nhé!mình gấp lắm
thank !