Cho tứ giác ABCD có góc A=\(125^0\); B = \(55^0\)
C/M: 2 đường p/g của góc D và C vuông góc với nhau
1.Cho tứ giác ABCD có A=125: B = 55. CM 2 đường phân giác của góc C và D vuông góc vs nhau
2. Cho tứ giác ABCD có A-B=50. Các tia phân giác của C và D cắt nhau tại I và góc CID=115. Tính A và B
Cho tứ giác ABCD có góc A bằng 47 độ góc B bằng 98 độ góc C bằng 125 độ tính góc D
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)(Tổng các góc trong một tứ giác)
\(\Rightarrow\widehat{D}=360^o-\left(\widehat{A}+\widehat{B}+\widehat{C}\right)\)
\(=360^o-\left(47^o+98^o+125^o\right)=90^o\)
Vậy \(\widehat{D}=90^o\)
#gboy2mai
Cho tứ giác ABCD có góc A = 125 độ ; B = 55 độ
cm : 2 dường p/g của góc D và C vuông góc với nhau
Tổng 4 góc trong 1 tứ giác là 360 độ nên góc A + góc B + góc BCD + góc ADC = 360 độ
125 độ + 55 độ + góc BCD + góc ADC = 360 độ
góc BCD + góc ADC = 180 độ
Gọi giao điểm 2 đường p/g của góc D và C là O
CO là tia phân giác của góc BCD (gt) nên góc OCD = 1/2 góc BCD
DO là tia phân giác của góc BDC (gt) nên góc ODC = 1/2 góc ADC
Áp dụng định lí tổng 3 góc trong 1 tam giác vào tam giác OCD, ta có:
góc OCD+ góc ODC + góc DOC =180 độ
1/2 ( góc BCD + góc ADC) + góc DOC = 180 độ
1/2 . 180 độ + góc DOC = 180 độ
90 độ + góc DOC = 180 độ
góc DOC = 90 độ
Vậy 2 đường phân giác của góc D và C vuông góc với nhau.
Cho tứ giác ABCD có góc A = 125 độ ; B = 55 độ
cm : 2 dường p/g của góc D và C vuông góc với nhau
Gọi giao điểm hai đường phân giác của góc D và góc C là E
Theo đề, ta có: \(\widehat{D}+\widehat{C}=360^0-125^0-55^0=180^0\)
\(\Leftrightarrow\widehat{EDC}+\widehat{ECD}=\dfrac{180^0}{2}=90^0\)
hay \(\widehat{DEC}=90^0\)(đpcm)
cho tứ giác ABCD cso A=125 độ , góc B=55 độ . CMR 2 đường phân giác của góc C và góc D vuông góc
Cho tứ giác ABCD có góc A=125 độ ; B = 55 độ
C/M: 2 đường p/g của góc D và C vuông góc với nhau
Gọi giao điểm hai đường phân giác của góc D và góc C là E
Theo đề, ta có: \(\widehat{D}+\widehat{C}=360^0-125^0-55^0=180^0\)
\(\Leftrightarrow\widehat{EDC}+\widehat{ECD}=\dfrac{180^0}{2}=90^0\)
hay \(\widehat{DEC}=90^0\)(đpcm)
BÀI 1 : CHO TỨ GIÁC ABCD CÓ : \(\widehat{A}+\widehat{B}=200^{^0};\widehat{B}+\widehat{C}=218^0;\widehat{C}+\widehat{D}=160^0\) TÍNH \(\widehat{C}\)VÀ \(\widehat{D}\)
BÀI 2 : CHO TỨ GIÁC ABCD CÓ \(\widehat{B}=80^0;\widehat{D}=120^0\)GÓC NGOÀI ĐỈNH C BẰNG 1300 . TÍNH GÓC A CỦA TỨ GIÁC
BÀI 3 : TỨ GIÁC ABCD CÓ \(\widehat{A}=57^0;\widehat{C}=110^0;\widehat{D}=75^0\).TÍNH GÓC NGOÀI TẠI ĐỈNH B
Bài 1: Cho tứ giác ABCD biết góc A : B : C : D = 1 : 2 : 3 : 4
a) Tính các góc của tứ giác ABCD
b) Chứng minh: AB // CD
c) Gọi giao điểm của AD cắt BC = E. Tính các góc của tam giác CDE
Bài 2: Cho tứ giác ABCD có góc C = \(80^0\) , D = \(70^0\) . Các tia phân giác của các góc A và B cắt nhau tại I. Tính AIB
Bài 3: Cho tứ giác ABCD có AB = BC; CD = DA
a) Chứng minh rằng BD là đường trung trực của AC
b) Cho biết góc B = \(100^0\) ; D = \(70^0\) . Tính góc A và C
Bài 1)
a) Vì A: B:C:D = 1:2:3:4
=> A= B/2 = C/3=D/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A = 36 độ
B= 72 độ
C=108 độ
D= 144 độ
b) Ta có :
A + D = 36 + 144 = 180 độ(1)
B+C = 72 + 108 = 180 độ(2)
Từ (1) và (2) ta có:
=> AB //CD (dpcm)
c) Ta có :
CDE + ADC = 180 độ(kề bù)
=> CDE = 180 - 144 = 36
Ta có :
BCD + DCE = 180 độ ( kề bù)
=> DCE = 180 - 108 = 72
Xét ∆CDE ta có :
CDE + DCE + DEC = 180 ( tổng 3 góc trong ∆)
=> DEC = 180 - 72 - 36 = 72 độ
Bài 2)
a) Ta có ABCD có :
A + B + C + D = 360 độ
Mà C = 80 độ
D= 70 độ
=> A+ B = 360 - 80 - 70 = 210 độ
Ta có AI là pg góc A
BI là pg góc B
=> DAI = BAI = A/2
=> ABI = CBI = B/2
=> BAI + ABI = A + B /2
=> BAI + ABI = 210/2 = 105
Xét ∆IAB ta có :
IAB + ABI + AIB = 180 độ
=> AIB = 180 - 105
=> AIB = 75 độ
=>
Câu 32. Cho tứ giác ABCD có AB//CD và góc A= góc B , hãy chọn khẳng định đúng
A. Tứ giác ABCD là hình bình hành.
B. Tứ giác ABCD là hình thang cân.
C. Tứ giác ABCD là hình thang vuông.
D. Tứ giác ABCD có góc bằng nhau.
B. Tứ giác ABCD là hình thang cân.