Cho tam giác nhọn ABC có AB = 13 ; AC = 15.Kẻ AD vuông góc BC(D thuộc BC) biết BD = 5 tính CD
Cho tam giác ABC có 3 góc nhọn, AB=4.5 BC=14 AC=13
a, Tính 3 góc nhọn
b, Tính diện tích tam giác ABC
cho tam giác nhọn abc .kẻ ah vuông góc bc .Biết AB = 13, AH = 12, HC = 16 .Tính chu vi tam giác ABC
* Tự vẽ hình nha !
Xét △AHB vuông tại H, ta có:
BH2 = AB2 - AH2 (Py-ta-go)
BH2 = 132 - 122 = 25
=> BH = √25 =5 (cm)
Xét △AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (Py-ta-go)
AC2 = 122 + 162 = 400
=> AC = √400 = 20 (cm)
Ta có: BC = BH + HC = 5 + 16 = 21 (cm)
Chu vi tam giác ABC:
AB + AC + BC = 13 + 20 + 21 = 54 (cm)
Vậy ....................
https://hoc247.net/hoi-dap/toan-7/tinh-chu-vi-tam-giac-abc-biet-ab-13cm-ah-12cm-va-hc-16cm-faq407733.html
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=AB^2-AH^2=13^2-12^2=25\)
hay HB=5(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20(cm)
Ta có: HC+HB=BC(H nằm giữa B và C)
nên BC=16+5=21(cm)
Chu vi của tam giác ABC là:
AB+AC+BC=13+20+21=54(cm)
CÁC BN THỬ VÀO TRANG CÁ NHÂN CỦA MIK ĐI, BẤT NGỜ LẮM
Tự vẽ hình nha
AH vg vs BC => Tam giác AHC và tam giác AHB v tại H
Áp dụng định lí pytago vào tam giác v AHC ta có:
\(AH^2+HC^2=AC^2\)
\(\Leftrightarrow\) \(12^2+16^2=AC^2\)
\(\Leftrightarrow\)\(AC^2=400\)
\(\Leftrightarrow\)\(AC=20cm\)
Áp dụng đlí pytago vào tam giác v AHB có:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow\)\(HB^2=AB^2-AH^2=13^2-12^2=25\)
\(\Rightarrow\)\(HB=5cm\)
Mà HB + HC = BC
=> BC = 5+16 = 21cm
Vậy AC = 20 cm và BC = 21 cm
Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12 cm và HC=16 cm.
a) Tính chu vi tam giác ABC.
b) So sánh các góc của tam giác ABC
a: \(BH=\sqrt{AB^2-AH^2}=5\left(cm\right)\)
\(AC=\sqrt{AH^2+HC^2}=20\left(cm\right)\)
BC=BH+CH=21(cm)
Chu vi tam giác ABC là:
\(C=20+21+13=54\left(cm\right)\)
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
Cho tam giác nhọn ABC. Kẻ AH vuông góc BC ( H thuoộc BC ). Biết AB = 13 cm; AH = 12 cm và HC = 16 cm. Tính chu vị tam giác ABC.
4. a)Tính cạnh góc vuông của một tam giác vuông cân có cạnh huyền bằng a.
b) Tính cạnh của một tam giác đều có đường cao bằng h.
5. Cho tam giác nhọn ABC, đường cao AH = 12 cm, AB = 13 cm, HC = 16 cm. Tính các độ dài AC, BC.
4:
a: Gọi độ dài cạnh góc vuông cần tìm là x
Theo đề, ta có: x^2+x^2=a^2
=>2x^2=a^2
=>x^2=a^2/2=2a^2/4
=>\(x=\dfrac{a\sqrt{2}}{2}\)
b:
Độ dài cạnh là;
\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)
5:
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>13^2=12^2+HB^2
=>HB=5cm
BC=5+16=21cm
ΔAHC vuông tại H
=>AH^2+HC^2=AC^2
=>AC^2=16^2+12^2=400
=>AC=20(cm)
Bài 60. Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC(H thuộc BC), cho biết AB=13,AH=12,hc=16 cm. Tính độ dài các cạnh của tam giác ABC.
1 ) Cho tam giác ABC có góc A nhọn , AB=4 , AC=5 và diện tích tam giác ABC =8 . Tính BC
2 ) Cho tam giác ABC có AB=3 , góc ACB = 45° , góc ABC = 60° . Tính BC
em mới học lớp 7 hà
năm nay lên lớp 8 =)))))
1)Ta có: \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)
\(\Leftrightarrow8=\dfrac{1}{2}\times4\times5\times sinA\)
\(\Leftrightarrow\sin A=0,8\)
Lại có: \(\left(\sin A\right)^2+\left(\cos A\right)^2=1\Leftrightarrow\cos A=0,6.\)
Áp dụng định lí hàm số cosin:
\(BC^2=AB^2+AC^2-2AB\times AC\times\cos A\)
\(\Leftrightarrow BC^2=4^2+5^2-2\times4\times5\times0,6=17\)
\(\Leftrightarrow BC=\sqrt{17}.\)
2) Trong \(\Delta ABC\) có: \(g\text{ó}cA+g\text{óc}B+g\text{óc}C=180^o\)
=> BAC=75o.
Áp dụng định lí hàm số sin:
\(\dfrac{AB}{\sin C}=\dfrac{BC}{\sin A}\Leftrightarrow\dfrac{3}{\sin45^o}=\dfrac{BC}{\sin75^o}\)
\(\Leftrightarrow BC=\dfrac{3+3\sqrt{3}}{2}\).
cho tam giác nhọn ABC . Kẻ AH vuông góc vớiBC tại H , biết AB = 13 cm AH=12cm , CH = 5cm
a) ghi giả thiết và kết luận
b) Tính BH , AC,BC?
c) tính cho vi hình tam giác
b: \(BH=\sqrt{AB^2-AH^2}=5\left(cm\right)\)
BC=BH+CH=5+5=10(cm)
\(AC=\sqrt{12^2+5^2}=13\left(cm\right)\)
b: C=AB+BC+AC=10+13+13=36(cm)