Cho tam giác ABC có ∠ A = 60 0 ; AB = 6cm, AC = 9cm. Dựng tam giác đồng dạng với tam giác ABC theo tỉ số đồng dạng k = 1/3
Cho tam giác ABC có góc B = 600 . Trên BC lấy D sao cho góc BAD = 600 . H là trung điểm của BD . Cm:
a) Tam giác DAC cân
b) Tam giác ABC là tam giác gì
BÀI TẬP
Bài 1. Cho tam giác ABC có AB=5cm; AC=7cm. So sánh <B và <C
Bài 2. Cho tam giác ABC có AB=3cm; AC= 4cm;BC = 5cm. So sánh các góc của
tam giác
Bài 3.Cho tam giác có <B=60 0 ; <C =40 0 . So sánh các cạnh của tam giác ABC
Bài 4. Cho tam giác ABC vuông ở A có AB= 6cm; BC = 10 cm
1/ Tính AC
2/ So sánh các góc của tam giác ABC
Cho tam giác ABC có góc A = 80o , góc B = 600 . So sánh 3 cạnh AB,AC,BC của tam giác ABC?
Xét \(\Delta ABC\)có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(\widehat{C}=40^o\)
Áp dụng bất đẳng thức trong tam giác ta có
AB<AC<BC ( 40o<600<800)
Xét tam giác ABC, ta có:
\(\widehat{A}\) +\(\widehat{B}\) +\(\widehat{C}\) = 180 độ ( ĐL Pytago )
=> \(\widehat{C}\) = 180 -(\(\widehat{B}\) + \(\widehat{A}\) )
=180- (60+80) = 180 - 140 = 40độ
Xét tam giác ABC, ta có: \(\widehat{A}\) >\(\widehat{B}\) >\(\widehat{C}\) ( 80>60>40)
=> BC>AC>AB (t/c góc và cạnh đối diện trog tam giác)
Cho tam giác ABC; góc B= 600, AB=7 cm, BC=15 cm. Trên cạnh BC lấy điểm D sao cho góc BAD=600. Gọi H là trung điểm của BD
a. Tính độ dài HD
b. Tính độ dài AC
c. Tam giác ABC có phải là tam giác vuông hay không?
a) +Xét tam giác ABD :
ta có góc B = 60* ,góc BAD = 60*
mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )
=> góc ADB = 60*
=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm
ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm
+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :
AB^2 = AH^2 + BH^2 => em tự tính AH nhé
+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm
+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm
AC^2 =AH^2 + HC^2 => AC =13cm
b) AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A
Cho tam giác nhọn ABC, có hai đường cao AH, BK cắt nhau tại D. a) Tính ABD khi 0 C 60 = . b) Chứng minh rằng nếu DA = DB thì tam giác ABC là tam giác cân.
cho tam giác ABC có góc A=600. Đường cao BD, CE. M là trung điểm BC. Chứng minh tam giác BDM đều
Giải phần góc nhé:
Gọi I là giao điểm của CE và BD.
Dễ thấy \(\Delta BEI\sim\Delta CDI\)
\(\Rightarrow\frac{EI}{DI}=\frac{BI}{CI}\)
\(\Rightarrow\frac{EI}{BI}=\frac{DI}{CI}=sin30^o=\frac{1}{2}\)
Bên cạnh đó có: \(\widehat{EID}=\widehat{BIC}\)
\(\Rightarrow\Delta EID\sim\Delta BIC\)
\(\Rightarrow\frac{ED}{BC}=\frac{EI}{BI}=\frac{DI}{CI}=\frac{1}{2}\)
\(\Rightarrow ED=MB=MC\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\)tam giác BDM đều
Tam giác CEB vuông tại E có M là trung điểm cạnh huyền.
\(\Rightarrow ME=MB=MC\left(1\right)\)
Tam giác CDB vuông tại E có M là trung điểm cạnh huyền.
\(\Rightarrow MD=MB=MC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow MD=ME\left(3\right)\)
Tam giác AEC vuông tại E
\(\Rightarrow\widehat{ACE}=90^o-\widehat{CAE}=90^o-60^o=30^o\)
Dễ thấy tứ giác EDCB nội tiếp đường tròn tâm M.
\(\Rightarrow\widehat{EMD}=2\widehat{ECD}=2.30^o=60^o\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\Delta BDM\) đều.
Cho tam giác ABC có \(\widehat{A}=60^0;BC=6\). Tính bán kính đường tròn ngoại tiếp tam giác đó ?
Cho tam giác ABC có góc B = 600. Hai tia phân giác AM và CN của tam giác ABC cắt nhau tại I.
a) Tính góc AIC
b) Chứng minh IM = IN
mk ra kết quả trước nhé!
a/120 độ
b/ từ từ
a/ Ta có: góc BAC+BCA=180-60=120 độ
mà góc ACN=NCB(phân giác góc C);CAM=MAB(phân giác góc A)
=> góc CAI+ACI=1/2*120=60 độ
Mà góc CAI+ACI+AIC=180 độ
AIC=180-60 độ=120 độ
Cho tam giác ABC có AB = AC. Tam giác ABC không là tam giác đều nếu thỏa mãn điều kiện:
A. B ^ = 60 ° .
B. AB = BC.
C. AB < BC.
D. A ^ = 60 ° .
cho tam giác ABC có góc B nhỏ hơn 600. AD là phân giác góc A . AM là phân giác tam giác ACD. Biết AB>AD. Chứng minh BC>4DM