ΔABC và ΔDEF có \(\dfrac{AB}{ED}=\dfrac{AC}{EF}\) ; A=E vậy ΔABC∼....
ΔABC và ΔDEF có AB = ED, BC = EF. Thêm điều kiện nào sau đây để ΔABC=ΔDEF ?
· A. =
· B. =
· C. AB = AC
· D. AC = DF
GIÚP LINH VỚI ;-;
ΔABC và ΔDEF có AB=ED,AC=EF.Cần thêm điều kiện nào sau đây để ΔABC=ΔDEF?
A.Â=D^
B.B^=Ê
C.AB=AC
D.AC=DF
Giúp mình với mình cần gấp
1) cho ΔABC ∼ ΔDEF theo tỉ số đồng dạng k=\(\dfrac{3}{2}\) . Diện tích ΔABC là 27 cm\(^2\), thi diện tích ΔDEF là:
A. 12cm\(^2\) B.24cm\(^2\) C. 36cm\(^2\) D. 18cm\(^2\)
2) ΔABC ∼ΔDEF có AB=3cm, AC=5cm, BC=7cm, DE=6cm. Ta có :
A. DF=10cm B. DF=20cm C. EF=14cm D.EF=10cm
cho ΔABC và ΔDEF có AB=EF và BC=DE
A) Muốn ΔABC và ΔDEF bằng nhau theo trường hợp c_g_c thì cần thiếu điều kiện nào( đủ 1 điều kiện)
B) giả sữ ΔABC có góc c= 54 độ; AC= 6cm. Tính số đo của cạnh góc tương ứng trong ΔDEF
a: \(\widehat{B}=\widehat{E}\)
Cho Δ A B C = Δ D E F . Biết rằng AB=5cm; AC=12cm, EF=13cm. Tính chu vi tam giác DEF là
A. 30cm
B. 22 cm
C. 18 cm
D. 20 cm
Cho Δ A B C = Δ D E F . Biết rằng AB=6cm; AC=8cm, EF=10cm. Tính chu vi tam giác DEF là
A. 24cm
B. 20cm
C. 18 cm
D. 30 cm
cho ΔABC có AB=3cm; AC=4cm; BC=5cm và ΔABC đồng dạng ΔDEF với tỉ số đồng dạng là 2. vậy chu vi ΔDEF là
Ta có:
\(\dfrac{AB}{DE}=2;\dfrac{AC}{DF}=2;\dfrac{BC}{EF}=2\)
\(\Leftrightarrow\dfrac{3}{DE}=2;\dfrac{4}{DF}=2;\dfrac{5}{EF}=2\)
\(\Leftrightarrow DE=\dfrac{3}{2};DF=\dfrac{4}{2};EF=\dfrac{5}{2}\)
\(\Rightarrow C_{DEF}=\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}=\dfrac{12}{2}=6\left(cm\right)\)
ta có : ΔABC~ΔDEF (gt)
=>\(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{\text{EF}}=k\)
=> DE = 3:2= 1,5 (cm)
DF = 4:2 = 2 (cm)
BC = 5:2 = 2,5 (cm )
=> Chu vi tam giác DEF = DE+DF+BC = 1,5+2+2,5 = 6(CM)
Cho ΔABC, trung tuyến AM, phân giác của \(\widehat{AMB}\),\(\widehat{AMC}\) cắt AB, AC thứ tự tại E,D
a)C/m ED//BC
b)Gọi AM cắt DE tại I. C/m I là trung điểm của ED và IM=ID
c)C/m \(\dfrac{2}{DE}\)=\(\dfrac{1}{AM}\)+\(\dfrac{1}{BM}\)
a: Xét ΔMAB có ME là phân giác
nên \(\dfrac{AE}{EB}=\dfrac{AM}{MB}=\dfrac{AM}{MC}\left(1\right)\)
Xét ΔAMC có MD là phân giác
nên \(\dfrac{AD}{DC}=\dfrac{AM}{MC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
Xét ΔABC có \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
nên ED//BC
b: Xét ΔABM có EI//BM
nên \(\dfrac{EI}{BM}=\dfrac{AI}{AM}\left(3\right)\)
Xét ΔAMC có ID//MC
nên \(\dfrac{ID}{MC}=\dfrac{AI}{AM}\left(4\right)\)
Từ (3) và (4) suy ra \(\dfrac{EI}{BM}=\dfrac{ID}{MC}\)
mà BM=MC
nên EI=ID
Ta có: ID//MC
=>\(\widehat{IDM}=\widehat{MDC}\)(hai góc so le trong)
mà \(\widehat{MDC}=\widehat{IMD}\)(MD là phân giác của góc IMC)
nên \(\widehat{IDM}=\widehat{IMD}\)
=>IM=ID