Những câu hỏi liên quan
NA
Xem chi tiết
NT
22 tháng 10 2021 lúc 23:31

c: Để (d) vuông góc với (Δ) thì \(\left(6m+1\right)\cdot6=-1\)

\(\Leftrightarrow6m+1=-\dfrac{1}{6}\)

hay \(m=-\dfrac{7}{36}\)

Bình luận (0)
TH
Xem chi tiết
NM
24 tháng 12 2021 lúc 11:51

\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)

Bình luận (0)
NV
Xem chi tiết
PB
Xem chi tiết
CT
5 tháng 4 2017 lúc 13:52

Đáp án C

Ta có y ' = 3 x 2 − 6 x  chia y cho y' ta được y = 1 3 x − 1 y ' − 2 x + 2  nên đường thẳng  d có PT: y = − 2 x + 2 . Để  d / / Δ ⇔ 2 m = − 2 ⇒ m = − 1  

Bình luận (0)
LM
Xem chi tiết
NT
23 tháng 12 2023 lúc 20:42

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)

Bình luận (0)
HN
Xem chi tiết
KR
3 tháng 1 2021 lúc 20:06

a) Để hàm số đồng biến thì a>0  => m-1>0 <=> m>1

b) Thay M(2;1) vào h/s

1=(m-1).2+2m-5  => m=2

Bình luận (0)
KR
3 tháng 1 2021 lúc 20:08

c) Để d song song với đường thẳng trên thì a=a'  \(m-1=3\Leftrightarrow m=4\)

d) Cắt 1 điểm trên trục tung thì b=b'  \(\Leftrightarrow2m-5=3\Leftrightarrow m=4\)

Bình luận (0)
H24
3 tháng 1 2021 lúc 20:45

Tiếp tục với bài của bạn Elza Julius Ruventaren 

e) Gọi điểm cố định là \(M\left(x_0;y_0\right)\)

\(\Leftrightarrow\left(m-1\right)x_0+2m-5=y_0\)  \(\left(\forall m\right)\)

\(\Leftrightarrow mx_0-x_0+2m-5=y_0\)  \(\left(\forall m\right)\)

\(\Leftrightarrow m\left(x_0+2\right)=y_0+x_0+5\)  \(\left(\forall m\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+2=0\\y_0+x_0+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_0=-2\\y_0=-3\end{matrix}\right.\)

Vậy (d) luôn đi qua điểm cố định \(\left(-2;-3\right)\)

Bình luận (0)
XO
Xem chi tiết
NT
5 tháng 3 2022 lúc 10:26

a: Thay x=4 và y=1 vào y=(m+1)x-3, ta được:

4(m+1)-3=1

=>4m+4-3=1

=>4m+1=1

hay m=0

b: Để hai đường vuông góc thì 5(m+1)=-1

=>m+1=-1/5

hay m=-6/5

c: Thay x=2 vào y=3x-1, ta được:

\(y=3\cdot2-1=5\)

Thay x=2 và y=5 vào (d), ta được:

2(m+1)-3=5

=>2(m+1)=8

=>m+1=4

hay m=3

Bình luận (0)
HA
Xem chi tiết
NT
5 tháng 8 2021 lúc 14:25

a) Thay x=-1 và y=4 vào (d), ta được:

\(3m\cdot\left(-1\right)+m-2=4\)

\(\Leftrightarrow-2m=6\)

hay m=-3

b) Để (d)//(Δ) thì \(\left\{{}\begin{matrix}3m=6\\m-2\ne-1\end{matrix}\right.\Leftrightarrow m=2\)

Bình luận (1)
HA
5 tháng 8 2021 lúc 14:33

cho mình xin câu C với bạn !! :)

 

 

Bình luận (0)
TL
5 tháng 8 2021 lúc 15:05

c)

`y=3mx+m-2`

`<=>3mx+m-2-y=0`

`<=>(3x+1)m-(y+2)=0`

`=> {(3x+1=0),(y+2=0):}`

`<=> {(x=-1/3),(y=-2):}`

Vậy điểm cố định mà d luôn đi qua là: `(-1/3 ; -2)`

Bình luận (0)
VL
Xem chi tiết
AH
9 tháng 12 2023 lúc 18:09

Lời giải:

a. Để hàm đồng biến thì $m-1>0\Leftrightarrow m>1$

Để hàm nghịch biến thì $m-1<0\Leftrightarrow m< 1$

b. Để đths đi qua điểm $A(-1;1)$ thì:

$y_A=(m-1)x_A+m$

$\Leftrightarrow 1=(m-1)(-1)+m=1-m+m$

$\Leftrightarrow 1=1$ (luôn đúng)

Vậy đths luôn đi qua điểm A với mọi $m$

c.

$x-2y=1\Rightarrow y=\frac{1}{2}x-\frac{1}{2}$

Để đths đã cho song song với đths $y=\frac{1}{2}x-\frac{1}{2}$ thì:

\(\left\{\begin{matrix} m-1=\frac{1}{2}\\ m\neq \frac{-1}{2}\end{matrix}\right.\Leftrightarrow m=\frac{3}{2}\)

d,

ĐTHS cắt trục hoành tại điểm có hoành độ $\frac{2-\sqrt{3}}{2}$, tức là ĐTHS đi qua điểm $(\frac{2-\sqrt{3}}{2}; 0)$

$\Rightarrow 0=(m-1).\frac{2-\sqrt{3}}{2}+m$

$\Leftrightarrow m=\frac{2-\sqrt{3}}{4-\sqrt{3}}$

Bình luận (0)