cho x,y khác 0 và 1/x+1/y=5; 1/x-1/y=1. Tính x+y
tìm số tự nhiên x và y(y khác 0) sao cho x/3+1/y=1/5
cho x,y,z khác 0,x+y+z khác 0 thoả mãn 1/x+1/y+1/z=1/x+y+z. tính giá trị biểu thức A=(x+y)(y^3+z^3)(z^5+x^5)
cho x, y, z khác 0 và x+y+z khác 0 và 1/x+1/y+1/z=1/x+y+z .
chứng minh 1/x^2015+1/y^2015+1/z^2015=1/x^2015+y^2015+z^2015
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{z\left(x+y+z\right)}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\)(x + y)z(x + y + z) + (x + y)xy = 0
\(\Leftrightarrow\)(x + y) [z(x + y + z) + xy] = 0
\(\Leftrightarrow\)(x + y)[z(x + z) + y(x + z)] = 0
\(\Leftrightarrow\) (x + y)(y + z)(z + x) = 0
Trường hợp 1: x + y = 0\(\Leftrightarrow\)x = -y\(\Leftrightarrow\)x2015 = -y2015\(\Leftrightarrow\)\(\frac{1}{x^{2015}}=-\frac{1}{y^{2015}}\)\(\Leftrightarrow\)\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}=0\)
và x2015 + y2015 = 0. Do đó \(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)
Trường hợp 2: y + z = 0 làm tương tự
Trường hợp 3: x + z = 0 làm tương tự
Vậy bài toán được chứng minh.
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy nha
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web
cho x,y,z khác nhau và khác 0 và 1/x+1/y+1/z=0
tính giá trị biểu thức : A= y+z/x+z+x/y+x+y/z
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z};\frac{1}{x}+\frac{1}{z}=-\frac{1}{y};\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)
\(A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\)
\(=\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{x}{y}+\frac{x}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{y}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=y\cdot-\frac{1}{y}+x\cdot-\frac{1}{x}+z\cdot-\frac{1}{z}=-1-1-1=-3\)
vậy A=-3
a)Cho x và y là hai số thực thoã mãn 3x-=1 chứng minh rằng : 5^2-^2<5/4
b)Cho x khác y ; x khác -y;y khác 0 thoã mãn y/x+y + 2y^2/x^2+y^2 + 4y^4/x^4+y^4 + 8y^8/x^8-y^8=2021 tính giá trị x/y
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như trên khó theo dõi quá.
Cho x khác 0, y khác 0, z khác 0 và\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
và x = y + z. CMR: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đề bài có vấn đề bạn nhé !
Đẳng thức <=>1/x+1/y+1/z=1/x-1/y-1/z
<=>2(1/y+1/z)=0
<=> (y+z)/yz=0
<=> y+z=0 do yz khác 0 (đk)
<=> x=0 do x=y+z
đến đây thì vô lí nhé do x khác 0 (đk)
CHo x khác 0 , y khác 0 và z khác 0 , \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\) = 1 và x = y + z .
CMR : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) = 1
Đề sai nhá đáng nẽ là ; CMR : \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Vì \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
Bình phương cả hai vế ta có : \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(-\frac{1}{xy}+-\frac{1}{xz}+\frac{1}{yz}\right)=1\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\frac{x-y-z}{zyz}=1\)
Vì x = y + z => x - y - z = 0
Nên : \(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+0=1\)
Vậy \(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)(đpcm)
Nếu đề đúng như you nói : \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)thì tui có another way :
\(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{2}{yz}-\frac{2}{xz}=1\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{x}\left(\frac{1}{y}+\frac{1}{z}\right)+\frac{2}{yz}=1\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{x}\cdot\frac{\left(y+z\right)}{yz}+2yz=1\)
Mà x = y+z nên \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\left(đpcm\right)\)
Cho x và y là hai số khác 0 và thỏa mãn x+y khác 0. Chứng minh rằng:
\(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{x^3y^3}\)
bài 6 quy dồng mẫu thức các phân tử a)1 phần x+1 và 6 phần x-x mũ 2 với x khác 0 và x khác - hoặc + 1 b) y+5 phần y mũ 2 +8y +16 và y phần 3 y+12 với y khác -4
cho x,y,z khác 0 và x khác y khác z , thỏa mãn :
x^2 -xy = y^2-yz = z^2 - zx = a
1 ) cmr : a khác 0
2) cmr ; 1/x + 1/y + 1/z = 0
3 ) tính M = x/z + z/y + y /x
2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)
lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)
lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\)
lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)
cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)
1) \(a=x^2-xy=x\left(x-y\right)\ne0\left(x\ne0,x\ne y\right)\)
mik cần c3 , ai làm giúp mik đc ko