a, B= 263^2 + 74.263 + 37^2
b , C = 136^2 - 92.136;+ 46^2
c , D = ( 50^2 + 48^2 + 46^2 +....+ 2^2 ) - ( 49^2 + 47^2 + 45^2 + ...... + 1^2 )
Tính hợp lý
B=263^2+74.263+37^2
C=136^2-92.136+46^2
D=(50^2+48^2+46^2+....+2^2) - (49^2+47^2+45^2 +.........+ 1^2 )
Tính giá trị biểu thứ bằng cách xử lí
a) A= 258^2-242^2/254^2-246^2 b) 263^2+74.263+37^2 c) 136^2-92.136+46^2 d) (50^2+48^2+46^2+.....+2^2)-(49^2+47^2+45^2+....+1^2)a: \(A=\dfrac{\left(258-242\right)\left(258+242\right)}{\left(254-246\right)\left(254+246\right)}=\dfrac{16}{8}=2\)
b: \(=\left(263+37\right)^2=300^2=90000\)
c: \(=\left(136-46\right)^2=90^2=8100\)
d: \(=50^2-49^2+48^2-47^2+...+2^2-1^2\)
=50+49+...+2+1
=51x50:2=1275
Tính hợp lí
A=2582_2462 / 2542_2462
B=2632+74.263+372
C=1362_92.136+462
D=(502+482+.......+22) - (492+472+......+12)
\(\text{Tính giá trị biểu thức bằng cách hợp lí }\)
\(\text{b) 263^2+74.263+37^2 }\)
\(\text{c) 136^2-92.136+46^2}\)
\(\text{d) (50^2+48^2+46^2+.....+2^2)-(49^2+47^2+45^2+....+1^2)}\)
b) \(263^2+74.263+37^2\)
\(=\left(263+37\right)^2\)
\(=300^2\)
\(=90000\)
c) \(136^2-92.136+46^2\)
\(=\left(136-46\right)^2\)
\(=90^2\)
\(=8100\)
Tính giá trị biểu thức 1 cách hợp lý:
\(a.A=\frac{63^2-47^2}{215^2-105^2}\)
\(b,B=\frac{437^2-363^2}{537^2-463^2}\)
\(c,C=\frac{258^2-242^2}{254^2-246^2}\)
\(d.D=263^2+74.263+37^2\)
\(e.E=136^2-92.136+46^2\)
Giúp mk nha!Mk đang cần gấp!
\(\frac{63^2-47^2}{215^2-105^2}=\) \(\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
\(=\frac{16.110}{110.320}=\frac{16}{320}\)\(=\frac{1}{20}\)
các câu kia làm tương tự nha
nhưng câu d với câu e mk khô hiểu lắm!
Bài 3: Tìm x biết:
a) \(|x-2|+9y^2+12xy+4x^2=0\)
b) \(3x^2+y^2+10x-2xy+26=0\)
Bài 2: Tính giá trị biểu thức 1 cách hợp lí:
\(A=263^2+74.263+37^2\)
\(B=136^2-92.136+46^2\)
\(C=-1^2+2^2-3^2+4^2-5^2+6^2-...-99^2+100^2\)
\(D=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Bài 3:
a) \(\left|x-2\right|+9y^2+12xy+4x^2=0\)
\(\Leftrightarrow\left|x-2\right|+\left(3y+2x\right)^2=0\)
Dễ thấy \(VT\ge0\forall x;y\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\3y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\frac{-4}{3}\end{matrix}\right.\)
Vậy...
b) \(3x^2+y^2+10x-2xy+26=0\)
\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x^2+5x+\frac{25}{4}\right)+\frac{27}{2}=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x+\frac{5}{2}\right)^2=\frac{-27}{2}\)
Dễ thấy \(VT\ge0\forall x;y\) mặt khác \(VP< 0\)
Do đó pt vô nghiệm
Bài 2:
\(A=263^2+74\cdot263+37^2\)
\(A=263^2+2\cdot263\cdot37+37^2\)
\(A=\left(263+37\right)^2\)
\(A=300^2\)
\(A=90000\)
b) tương tự
\(C=-1^2+2^2-3^2+...-99^2+100^2\)
\(C=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)
\(C=\left(2-1\right)\left(1+2\right)+\left(4-3\right)\left(3+4\right)+...+\left(100-99\right)\left(99+100\right)\)
\(C=1+2+3+4+...+99+100\)
\(C=\frac{\left(100+1\right)\cdot100}{2}=5050\)
\(D=\left(3+1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2D=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2D=3^{64}-1\)
\(D=\frac{3^{64}-1}{2}\)
Tính:
A=263^2+74.263+37^2
\(263^2+74.263+37^2\)
\(=69169+74.263+1369\)
\(=69169+19462+1369\)
\(=88631+1369\)
\(=90000\)
Bài 1: Tìm x biết:
a) \(|x-2|+9y^2+12xy+4x^2=0\)
b) \(3x^2+y^2+10x-2xy+26=0\)
Bài 2: Tính giá trị biểu thức 1 cách hợp lí:
\(A=263^2+74.263+37^2\)
\(B=136^2-92.136+46^2\)
\(C=-1^2+2^2-3^2+4^2-5^2+6^2-...-99^2+100^2\)
\(D=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
B1: a) \(\left|x-2\right|+9y^2+12xy+4x^2=0\)
=> \(\left|x-2\right|+\left(3y+2x\right)^2=0\)
Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\left(3y+2x\right)^2\ge0\forall x;y\)
=> \(\left|x-2\right|+\left(3y+2x\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-2=0\\3y+2x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2x\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2.2=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{4}{3}\end{cases}}\)
Vậy ...
\(A=263^2+74.263+37^2\)
\(=263^2+2.263.37+37^2\)
\(=\left(263+37\right)^2\)
\(=300^2=90000\)
\(B=136^2-92.136+46^2\)
\(=136^2-2.136.46+46^2\)
\(=\left(136-46\right)^2\)
\(=90^2=8100\)
Tính gt biểu thức 1 cách hợp lí:2632+74.263+372
\(263^2+74.263+37^2=263^2+2.37.263+37^2=\left(263+37\right)^2=300^2=90000\)
Áp dụng hằng đẳng thức thức 1: (a+b)2=a2+2ab+b2