Cho △ABC vuông cân tại A, qua A kẻ đường thẳng d cắt BC, BM ⊥ d, CN ⊥ d. CM; △BAN = △ACN
cho tam giác ABC vuông cân tại A. qua A kẻ đường thẳng d cắt BC, kẻ BM vuông góc d, CN vuông góc d. Chứng minh tam giác BAM = tam giác ACN
CHO TAM GIÁC ABC VUÔNG CÂN TẠI A, VẼ ĐƯỜNG THẲNG D ĐI QUA A KHÔNG CẮT BC. VẼ BM VUÔNG GÓC VỚI B TẠI M, CN VUÔNG GÓC VỚI D TẠI N . CHỨNG MINH; BM^2+CN^2=AB
Cho tam giác ABC cân tại A. Lấy điểm M trên cạch BC (MB<MC) trên tia đối của tia CB lấy điểm N sao cho BM=CN. Đường thẳng qua M vuông góc với BC cắt AB tại E. Đường thẳng qua N vuông góc BC cắt AC tại F.
a) Chứng minh:EM=FN
b)Qua E kẻ ED//AC (D thuộc BC)
c) EF cắt BC tại O ; Chứng minh OE=OF
Vẽ hình, giả thiết và giải chi tiết cho mình với ạ!
Mình cảm ơn!
tam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KCtam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KCtam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KC
Cho tam giác ABC vuông cân tại A. Đường thẳng d qua A không cắt cạnh BC vẽ BM vuông góc d tại M, CN vuông góc d tại N
c.m: a) tam giác MAB = tam giác NCA
b) BM^2 +CN^2=AB^2
a, Ta có:
góc CAN + BAM + BAC = 180 độ
mà góc BAC = 90 ( tam giác ABC vuông cân tại A )
\(\Rightarrow\)BAM + CAN = 90 độ ( 1 )
Xét tam giác MBA vuông tại M , ta có:
BAM + ABM = 90 độ ( tổng 2 góc nhọn trong tam giác vuông ) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\)CAN + BAM = BAM + ABM
\(\Rightarrow\)CAN = ABM
Xét tam giác vuông MAB và tam giác vuông NCA , ta có :
AB = AC ( tam giác ABC vuông cân tại A )
CAN = ABM
\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)NCA ( ch - gn )
b, Vì \(\Delta MAB=\Delta NCA\)(CMT)
\(\Rightarrow\)AM = CN ( 2 cạnh tương ứng )
Xét \(\Delta MBA\)vuông tại M , ta có :
\(BM^2+AM^2=AB^2\)( định lý Py - ta - go )
mà AM = CN ( CMT )
\(\Rightarrow BM^2+CN^2=AB^2\)( ĐPCM)
Cho tam giác ABC vuông cân tại A. Đường thẳng d qua A không cắt cạnh BC vẽ BM vuông góc d tại M, CN vuông góc d tại N
c.m: a) tam giác MAB = tam giác NCA
b) BM^2 +CN^2=AB^2
a) Đường thẳng d đi qua A mà k cắt BC => d // BC (1)
; BM | d ; CN | d => BM // CN (2)
Từ (1) và (2) => BM = CN (tính chất đoạn chắn)
Xét hai tam giác vuông MAB và NCA có :
AB = DC (do tam giác ABC vuông cân tại A)
BM = CD (cmt)
\(\Rightarrow\Delta MAB=\Delta NCA\) (cạnh huyền - cạnh góc vuông)
b) Từ \(\Delta MAB=\Delta NCA\) (câu a) \(\Rightarrow\widehat{A}=\widehat{C}\) và \(\widehat{B}=\widehat{A}\)
\(\Rightarrow\widehat{B}=\widehat{C}\) \(\Rightarrow\widehat{MAB}=\widehat{NAC}\) (3) (vì cụng phụ với 2 góc bằng nhau)
; mà \(\widehat{BAC}+\widehat{MAB}+\widehat{NAC}=180^o\) (kề bù) , \(\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^o\) (4)
Từ (3) và (4) \(\Rightarrow\widehat{MAB}=\widehat{NAC}=45^o\)
\(\Rightarrow\) Tam giác MAB vuông cân tại M
\(\Rightarrow AM=AB\)
Đã có BM = CN (cm a) \(\Rightarrow AM=CN\)
Xét tam giác vuông AMB có \(AB^2=BM^2+AM^2\) hay \(AB^2=BM^2+CN^2\)
cho tam giác ABC cân tại A. Lấy điểm M trên cạnh BC (MB<MC). Trên tia đối của tia CB lấy điểm N sao cho BM=CN. Đường thẳng qua M vuông góc với BC cắt AC tại E. Đường thẳng qua N vuông góc với BC cắt AC tại F.
a) Chứng minh EM=FN
b) Qua E kẻ ED//AC (D thuộc BC). Chứng minh MB=MD
c) EF cắt BC tại O. Chứng minh OE=OF
cho tam giác ABC cân tại A. Lấy điểm M trên cạnh BC (MB<MC). Trên tia đối của tia CB lấy điểm N sao cho BM=CN. Đường thẳng qua M vuông góc với BC cắt AC tại E. Đường thẳng qua N vuông góc với BC cắt AC tại F.
a) Chứng minh EM=FN
b) Qua E kẻ ED//AC (D thuộc BC). Chứng minh MB=MD
c) EF cắt BC tại O. Chứng minh OE=OF
cho tam giác abc vuông cân tại a, qua a vẽ đường thẳng d không cắt bc, bm vuông góc với d tại m, cn vuông góc d tại n. So sánh be+cf với độ dài ef
so sanh BM + CN voi MN chu ban nhi ?
tu ve hinh :
goc MAB + goc BAC + goc CAN = 180 do M; A; N thang hang
ma goc BAC = 90 do tamgiac ABC vuong can tai A (gt)
=> goc MAB + goc CAN = 90 do
MB | d (gt) => tamgiac ABM vuong tai M (dn) => goc MAB + goc MBA = 90 (tc)
=> goc MBA = goc CAN
xet tamgiac AMB va tamgiac CNA co : AB = AC do tamgiac ABC vuong can tai A (gt)
goc BMA = goc CNA ...
=> tamgiac AMB = tamgiac CNA (ch - gn)
=> MB = AN va MA = NC (dn)
ma MA + AN = MN
=> MB + NC = MN
vay_