Những câu hỏi liên quan
DL
Xem chi tiết
IY
21 tháng 6 2018 lúc 11:51

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

Bình luận (0)
QL
Xem chi tiết
KT
17 tháng 9 2023 lúc 21:49

a) Tam giác ABC cân tại A nên AB = AC. M, N lần lượt là trung điểm của cạnh AC, AB nên AM = AN.

Xét tam giác ABM và tam giác ACN có: AM = AN; \(\widehat A\)chung; AB = AC.

Vậy \(\Delta ABM = \Delta ACN\)(c.g.c) hay BM = CN.

b) Xét tam giác ABC có G là giao điểm của hai đường trung tuyến BM và CN nên là trọng tâm tam giác ABC. Do đó:

\(GB = \dfrac{2}{3}BM;GC = \dfrac{2}{3}CN\). Mà BM = CN nên GB = GC.

Vậy tam giác GBC cân tại G

Bình luận (0)
QL
Xem chi tiết
KT
18 tháng 9 2023 lúc 20:10

a) Xét 2 tam giác vuông BAM và CAN có:

\(\widehat{BAM} = \widehat{CAM}(=90^0)\)

AB=AC (Do tam giác ABC cân tại A)

\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)

=>\(\Delta BAM = \Delta CAN\)(g.c.g)

b) Cách 1: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat {B} + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} - \widehat {AMB} = {180^o} - {60^o} = {120^o}\)

Xét tam giác MAC có:

\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)

\(\Rightarrow \) Tam giác AMC cân tại M.

Vì \(\Delta BAM = \Delta CAN\)

=> BM=CN ( 2 cạnh tương ứng)

=> BM+MN=CN+NM

=> BN=CM

Xét 2 tam giác ANB và AMC có:

AB=AC (cmt)

\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))

BN=MC (cmt)

=>\(\Delta ANB = \Delta AMC\)(c.c.c)

Mà tam giác AMC cân tại M.

=> Tam giác ANB cân tại N.

Cách 2: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\)

Vì \(\Delta BAM = \Delta CAN\) nên AM = AN (2 cạnh tương ứng)

=> \(\Delta AMN\) đều (Tam giác cân có 1 góc bằng 60 độ)

=> \(\widehat {NAM}=60^0\)

Ta có: \(\widehat{BAN}+\widehat{NAM}=\widehat{BAM}\)

=> \(\widehat{BAN} + 60^0=90^0\)

=> \(\widehat{BAN}=30^0\)

Xét tam giác ABN có \(\widehat{BAN}=\widehat{ABN}(=30^0\) nên \(\Delta ABN\) cân tại N.

Ta có: \(\widehat{CAM}+\widehat{NAM}=\widehat{CAN}\)

=> \(\widehat{CAM} + 60^0=90^0\)

=> \(\widehat{CAM}=30^0\)

Xét tam giác ACM có \(\widehat{CAM}=\widehat{ACM}(=30^0\) nên \(\Delta ACM\) cân tại M.

Bình luận (0)
TM
Xem chi tiết
DN
Xem chi tiết
NT
21 tháng 3 2023 lúc 23:46

a: Xet ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH

b:

Xét ΔBAH có BA=BH

nên ΔBAH cân tại B

BA=BH

EA=EH

=>BE là trung trực của AH

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>BF là trung trực của CK(1)

Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC

=>ΔEAK=ΔEHC

=>EK=EC

=>E nằm trên trung trực của CK(2)

Từ (1), (2) suy ra B,E,F thẳng hàng

Bình luận (0)
NN
Xem chi tiết
DA
Xem chi tiết
PC
29 tháng 6 2016 lúc 19:46

tứ giác ABCD là hình thang

Bình luận (0)
OP
29 tháng 6 2016 lúc 19:53

Tứ giác ABCD là hình thang vuông

T nha 

Ai T mik mik T lại

Bình luận (0)
KH
Xem chi tiết
NM
24 tháng 12 2015 lúc 17:38

\(\Delta\)ABD ; \(\Delta\)ADC chỉ có thể cân tại D 

=> góc B = BAD

=> góc C = DAC

=> góc BAC = BAD + ADC = B+C  => 2A = A+B+C = 180

                                                         => A = 90

Bình luận (0)
PN
Xem chi tiết
TP
23 tháng 11 2018 lúc 17:53

A B C D M

a) Xét tam giác DAB và tam giác DAC có :

ABD = ACD ( = 900 )

AD chung

AB = AC ( gt )

=> tam giác DAB = tam giác DAC ( ch - cgv )

=> đpcm

b) Vì tam giác DAB = tam giác DAC ( chứng minh câu a )

=> BD = CD ( 2 cạnh tương ứng )

=> tam giác BDC cân tại D ( đpcm )

c) Ta có :

+) AB = AC => A thuộc đường trung trực của BC (1)

+) BM = MC => M thuộc đường trung trực của BC (2)

+) BD = CD => D thuộc đường trung trực của BC (3)

Từ (1),(2) và (3) => A, M, D thẳng hàng ( đpcm )

Bình luận (0)
H24
23 tháng 11 2018 lúc 18:51

*Link ảnh(nếu như olm không hiện):Ảnh - by tth

Ảnh (nếu olm ko hiện)

a) Xét tam giác DAB và tam giác DAC có:

AB = AC (gt)

AD (cạnh chung - cũng là cạnh huyền)

\(\widehat{ABD}=\widehat{ACD}\left(=90^o\right)\) (gt)

Do vậy \(\Delta DAB=\Delta DAC\) (cạnh huyền - cạnh góc vuông)

b) \(\Delta DAB=\Delta DAC\) nên BD = CD (hai cạnh tương ứng)

Do đó \(\Delta DBC\) cân (tại D)

c) Bạn Trần Phương  đã làm =))

Bình luận (0)
LY
Xem chi tiết