Những câu hỏi liên quan
DL
Xem chi tiết
IY
21 tháng 6 2018 lúc 11:51

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

Bình luận (0)
CT
Xem chi tiết
NV
20 tháng 1 2018 lúc 14:27

Do ∆ABC cân tại A=> góc B= góc C

Mà góc A=50°=> góc B=góc C= (180°-50°)/2=65°

Bình luận (0)
H24
20 tháng 1 2018 lúc 14:48

vì tg ABC cân tại A

    =>góc B = góc C

   * Xét tg ABC có : góc A + góc B + góc C =180 độ

                   mà  góc A =50 độ

                                       => góc B + góc C =180 độ -50 độ

                                       => góc B + góc C =130 độ

                  lại có : góc B = góc C (cmt)

                                        =>góc B = góc C=130 độ :2

                                        => góc B = góc C= 65 độ

                                        =>đpcm

Bình luận (0)
QL
Xem chi tiết
KT
18 tháng 9 2023 lúc 20:10

a) Xét 2 tam giác vuông BAM và CAN có:

\(\widehat{BAM} = \widehat{CAM}(=90^0)\)

AB=AC (Do tam giác ABC cân tại A)

\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)

=>\(\Delta BAM = \Delta CAN\)(g.c.g)

b) Cách 1: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat {B} + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} - \widehat {AMB} = {180^o} - {60^o} = {120^o}\)

Xét tam giác MAC có:

\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)

\(\Rightarrow \) Tam giác AMC cân tại M.

Vì \(\Delta BAM = \Delta CAN\)

=> BM=CN ( 2 cạnh tương ứng)

=> BM+MN=CN+NM

=> BN=CM

Xét 2 tam giác ANB và AMC có:

AB=AC (cmt)

\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))

BN=MC (cmt)

=>\(\Delta ANB = \Delta AMC\)(c.c.c)

Mà tam giác AMC cân tại M.

=> Tam giác ANB cân tại N.

Cách 2: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\)

Vì \(\Delta BAM = \Delta CAN\) nên AM = AN (2 cạnh tương ứng)

=> \(\Delta AMN\) đều (Tam giác cân có 1 góc bằng 60 độ)

=> \(\widehat {NAM}=60^0\)

Ta có: \(\widehat{BAN}+\widehat{NAM}=\widehat{BAM}\)

=> \(\widehat{BAN} + 60^0=90^0\)

=> \(\widehat{BAN}=30^0\)

Xét tam giác ABN có \(\widehat{BAN}=\widehat{ABN}(=30^0\) nên \(\Delta ABN\) cân tại N.

Ta có: \(\widehat{CAM}+\widehat{NAM}=\widehat{CAN}\)

=> \(\widehat{CAM} + 60^0=90^0\)

=> \(\widehat{CAM}=30^0\)

Xét tam giác ACM có \(\widehat{CAM}=\widehat{ACM}(=30^0\) nên \(\Delta ACM\) cân tại M.

Bình luận (0)
DN
Xem chi tiết
NL
11 tháng 4 2022 lúc 20:54

\(SA\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABC)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABC)

\(AB=AC\sqrt{2}=a\sqrt{2}\)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{\dfrac{3}{2}}\Rightarrow\widehat{SBA}\approx50^046'\)

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AC\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)

\(\Rightarrow SC\) là hình chiếu vuông góc của SB lên (SAC)

\(\Rightarrow\widehat{BSC}\) là góc giữa SB và (SAC)

\(SB=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(BC=AC=a\)

\(sin\widehat{BSC}=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{5}}\Rightarrow\widehat{BSC}\approx26^034'\)

b.

Theo cmt, \(BC\perp\left(SAC\right)\)

Mà \(BC=\left(SBC\right)\cap\left(ABC\right)\)

\(\Rightarrow\widehat{SCA}\) là góc giữa (SBC) và (ABC)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\\SA\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow\left(SAC\right)\perp\left(ABC\right)\)

\(\Rightarrow\) Góc giữa (SAC) và (ABC) là 90 độ

Bình luận (0)
NL
11 tháng 4 2022 lúc 20:55

undefined

Bình luận (1)
PN
Xem chi tiết
TP
23 tháng 11 2018 lúc 17:53

A B C D M

a) Xét tam giác DAB và tam giác DAC có :

ABD = ACD ( = 900 )

AD chung

AB = AC ( gt )

=> tam giác DAB = tam giác DAC ( ch - cgv )

=> đpcm

b) Vì tam giác DAB = tam giác DAC ( chứng minh câu a )

=> BD = CD ( 2 cạnh tương ứng )

=> tam giác BDC cân tại D ( đpcm )

c) Ta có :

+) AB = AC => A thuộc đường trung trực của BC (1)

+) BM = MC => M thuộc đường trung trực của BC (2)

+) BD = CD => D thuộc đường trung trực của BC (3)

Từ (1),(2) và (3) => A, M, D thẳng hàng ( đpcm )

Bình luận (0)
H24
23 tháng 11 2018 lúc 18:51

*Link ảnh(nếu như olm không hiện):Ảnh - by tth

Ảnh (nếu olm ko hiện)

a) Xét tam giác DAB và tam giác DAC có:

AB = AC (gt)

AD (cạnh chung - cũng là cạnh huyền)

\(\widehat{ABD}=\widehat{ACD}\left(=90^o\right)\) (gt)

Do vậy \(\Delta DAB=\Delta DAC\) (cạnh huyền - cạnh góc vuông)

b) \(\Delta DAB=\Delta DAC\) nên BD = CD (hai cạnh tương ứng)

Do đó \(\Delta DBC\) cân (tại D)

c) Bạn Trần Phương  đã làm =))

Bình luận (0)
CD
Xem chi tiết
BN
18 tháng 1 2016 lúc 8:54

tic cho mình hết âm nhé

Bình luận (0)
TM
Xem chi tiết
PT
Xem chi tiết
NL
21 tháng 7 2021 lúc 6:32

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đống thời là đường cao)

Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\)

Trong tam giác vuông SAM, kẻ đường cao \(AH\perp SM\)

\(\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow\widehat{ASH}\) hay \(\widehat{ASM}\) là góc giữa SA và (SBC)

\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}AB\sqrt{2}=\dfrac{a\sqrt{2}}{2}\)

\(tan\widehat{ASM}=\dfrac{AM}{SA}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{ASM}\approx35^016'\)

Bình luận (0)
NT
Xem chi tiết
H24
13 tháng 7 2019 lúc 17:33

A B C H K

Bình luận (0)
PT
Xem chi tiết