Những câu hỏi liên quan
LN
Xem chi tiết
VH
Xem chi tiết
NT
9 tháng 7 2023 lúc 13:21

a: góc A-góc D=20 độ

góc A+góc D=180 độ

=>góc A=(20+180)/2=100 độ và góc D=180-100=80 độ

góc B=2*góc C

góc B+góc C=180 độ

=>góc B=2/3*180=120 độ; góc C=180-120=60 độ

b: góc B-góc C=20 độ

góc B+góc C=180 độ

=>góc B=(180+20)/2=100 độ và góc C=80 độ

=>góc A=100+20=120 độ

=>góc D=60 độ

Bình luận (0)
GG
Xem chi tiết
AY
Xem chi tiết
TA
26 tháng 9 2018 lúc 21:16

+) Vì AB // CD nên :

\(\widehat{A}+\widehat{D}=180^o\)( 2 góc trong cùng phía )

Có : \(\widehat{A}=3\widehat{D}\)

\(\Rightarrow3\widehat{D}+\widehat{D}=180^o\)

\(4\widehat{D}=180^o\)

\(\widehat{D}=\frac{180^o}{4}=45^o\)

\(\Rightarrow\widehat{A}=45^o\cdot3=135^o\)

+) Vì AB // CD ta có :

\(\widehat{B}+\widehat{C}=180^o\)( hai góc trong cùng phía )

Mà \(\widehat{B}-\widehat{C}=30^o\)

\(\Rightarrow\widehat{B}=\left(180+30\right)\div2=105^o\)

\(\Rightarrow\widehat{C}=105^o-30^o=75^o\)

Bình luận (0)
HA
Xem chi tiết
HN
7 tháng 7 2018 lúc 9:39

Hình tự vẽ nhé

a, 

Gọi H là chân đường cao hạ từ C, ABCH là hình vuông

\(\Rightarrow CH=BC=\frac{AD}{2}\)

Tam giác CDH có:

\(\widehat{CHD=90^o;CH=HD}\)

\(\Rightarrow CHD\)là tam giác vuông cân tại H

\(\Rightarrow\widehat{CDH}=\widehat{HCD}=45^o\)

\(\Rightarrow\widehat{BCD}=90^o+45^o=135^o\)

b, Có CH = AH

\(\Rightarrow\)Tam giác AHC vuông cân tại H. Do đó \(\widehat{ACH}=45^o\)

Mà \(\widehat{HCD}=45^o\)

\(\Rightarrow\widehat{ACD}=45^o+45^o=90^o\)

Vậy \(AC\perp CD\)( đpcm )

Bình luận (0)
LA
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết

Vì tứ giác ABCD có AB //CD 

=> ABCD là hình thang 

=> A+D = 180 độ

Mà A = 40 + D 

=> 40 + D + D = 180 độ

=> 2D + 40 = 180 độ

=> 2D = 140 độ

=> D = 70 độ

=> A = 180 - 70 = 110 độ

Mà B + C = 180 độ

Mà B = 2C

=> 2C + C = 180 độ

=> 3C = 180 độ

=> C = 60 độ

=> B = 180 - 60 = 120 độ

Bình luận (0)
CH
Xem chi tiết
PD
20 tháng 3 2021 lúc 10:23

D C P H A B 3cm 4cm 4cm 60^ 60^

Bình luận (0)
 Khách vãng lai đã xóa
PD
20 tháng 3 2021 lúc 10:54

Định lí 1 : Nếu tam giác vuông có một góc bằng \(30^0\)thì cạnh đối diện với góc ấy bằng nửa cạnh huyền 

Vì \(DP\perp AB\)(giả thiết) \(\Rightarrow\Delta PAD\)vuông tại P

\(\Delta PAD\)vuông tại P có \(\widehat{DAP}=60^0\)(giả thiết)

\(\Rightarrow\widehat{PDA}=30^0\)

Do đó \(2PA=DA\)(định lí 1)

\(\Rightarrow4PA^2=DA^2\)

Vì \(\Delta PAD\)vuông tại P (chứng minh trên)

\(\Rightarrow PA^2+PD^2=AD^2\)(định lí Py-ta-go)

\(\Rightarrow PA^2+4^2=4PA^2\)(thay số)

\(\Rightarrow4PA^2-PA^2=16\)

\(\Rightarrow3PA^2=16\)

\(\Rightarrow PA^2=\frac{16}{3}\Rightarrow PA=\sqrt{\frac{16}{3}}=\frac{4}{\sqrt{3}}\left(cm\right)\)(vì \(PA>0\))

Do đó: \(DA=2PA=2.\frac{4}{\sqrt{3}}=\frac{8}{\sqrt{3}}\left(cm\right)\)

Vì \(CH\perp AB\)(giả thiết)

\(\Rightarrow\Delta CHB\)vuông tại H.

\(\Delta CHB\)vuông tại H có \(\widehat{HCB}=60^0\)(giả thiết)

\(\Rightarrow BC=2HC\)(định lí 1)

\(\Rightarrow BC=2.4\)(thay số)

\(\Rightarrow BC=8\left(cm\right)\)

Vì \(\Delta CHB\)vuông tại H (chứng minh trên)

\(\Rightarrow HB^2+HC^2=BC^2\)(định lí Py-ta-go)

\(\Rightarrow HB^2+4^2=8^2\)(thay số)

\(\Rightarrow HB^2+16=64\)

\(\Rightarrow HB^2=56\Rightarrow HB=\sqrt{56}=2\sqrt{14}\left(cm\right)\)(vì \(HB>0\))

Mặt khác, xét tứ giác DCHP có:

 \(DP//CH\)(vì cùng vuông góc với AB)

Và \(DP=CH\)(giả thiết)

\(\Rightarrow\)DCHP là hình bình hành 

\(\Rightarrow CD=PH=3\left(cm\right)\)(tính chất).

Ta có:

\(AB=AP+PH+HB\)

\(\Rightarrow AB=\frac{4}{\sqrt{3}}+3+2\sqrt{14}\left(cm\right)\)

Do đó:

\(P_{ABCD}=AB+BC+CD+DA=\)\(\frac{4}{\sqrt{3}}+3+2\sqrt{14}+8+3+\frac{8}{\sqrt{3}}\)(thay số)

\(P_{ABCD}=\frac{12}{\sqrt{3}}+14+2\sqrt{14}=4\sqrt{3}+2\sqrt{14}+14\left(cm\right)\)

Vậy \(P_{ABCD}=4\sqrt{3}+2\sqrt{14}+14\left(cm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PD
20 tháng 3 2021 lúc 11:08

Hình thang ABCD (\(AB//CD\)) có \(DP\perp AB\)(giả thiết)

\(\Rightarrow\)DP là đường cao của hình thang ABCD

Ta có:

\(S_{ABCD}=\frac{\left(AB+CD\right).DP}{2}=\frac{\left(\frac{4}{\sqrt{3}}+2\sqrt{14}+3+3\right).4}{2}\)

\(S_{ABCD}=\left(\frac{4}{\sqrt{3}}+2\sqrt{14}+6\right).2=\frac{8}{\sqrt{3}}+4\sqrt{14}+12\left(cm^2\right)\)

Vậy \(S_{ABCD}=\frac{8}{\sqrt{3}}+4\sqrt{14}+12\left(cm^2\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
NH
4 tháng 6 2017 lúc 12:07

Ta có hình vẽ: A B C D

Vì AB//CD

nên góc A+ góc D = 180 độ (1)

góc A - góc D = 20 độ

=> góc A = 20 độ + góc D (2)

thay (1) vào (2) ta được: 20 độ + góc D + góc D = 180 độ

20 độ + 2 lần góc D = 180 độ

2 lần góc D = 180- 20 = 160 độ

góc D = 160/2 = 80 độ

=> góc A = góc D + 20 độ = 80+ 20= 100 độ

mà góc B = 2 lần góc C

góc B + góc C = 180 độ (trong cùng phía)

hay 2 lần góc C + góc C = 180 độ

3 lần góc C = 180 độ

góc C = 180/ 3= 60 độ

=> góc B = góc C . 2 = 60. 2= 120 độ

Vậy góc A= 100 độ

góc B = 120 độ

góc C = 60 độ

góc D = 80 độ

Bình luận (0)