Tìm m để pt sau có nghiệm \(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\) :
a) \(\cos^2x-2m\cos x+4\left(m-1\right)=0\)
b) \(4\sin^2\frac{x}{2}+2\sin\frac{x}{2}+m-2=0\)
c1 có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm \(x\in\left[-\dfrac{\pi}{6},\dfrac{\pi}{4}\right]\), câu này tui tìm được 2 giá trị mà đáp án lại là 3 nên mong lung ..
c2 tìm số nghiệm của pt \(\dfrac{tan^2x-tanx+cot^2x-cotx-2}{sin2x-1}=0\) thuộc khoảng ( pi, 3pi)
1.
\(\Leftrightarrow1-2sin^2x+sinx+m=0\)
\(\Leftrightarrow2sin^2x-sinx-1=m\)
Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
Xét hàm \(f\left(t\right)=2t^2-t-1\) trên \(\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(f\left(-\dfrac{1}{2}\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\) ; \(f\left(\dfrac{\sqrt{2}}{2}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow-\dfrac{9}{8}\le f\left(t\right)\le0\Rightarrow-\dfrac{9}{8}\le m\le0\)
Có 2 giá trị nguyên của m (nếu đáp án là 3 thì đáp án sai)
2.
ĐKXĐ: \(sin2x\ne1\Rightarrow x\ne\dfrac{\pi}{4}\) (chỉ quan tâm trong khoảng xét)
Pt tương đương:
\(\left(tan^2x+cot^2x+2\right)-\left(tanx+cotx\right)-4=0\)
\(\Leftrightarrow\left(tanx+cotx\right)^2+\left(tanx+cotx\right)-4=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx+cotx=\dfrac{1+\sqrt{17}}{2}\\tanx+cotx=\dfrac{1-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)
Nghiệm xấu quá, kiểm tra lại đề chỗ \(-tanx+...-cotx\) có thể 1 trong 2 cái đằng trước phải là dấu "+"
Miền \(\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) là cung tròn CAB
Chiếu cung tròn lên trục cos (trục ngang) được đoạn màu đỏ, với O có hoành độ bằng 0, A có hoành độ bằng 1
Do đó miền giá trị của cos trên \(\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) là \(\left[0;1\right]\) hay đoạn OA
Cho phương trình: \(m=\sin^4x+\cos^4x+\cos2x\)
a, Tìm m để pt có nghiệm
b, Tìm m để pt có nghiệm \(\in\left[\frac{-\pi}{2};\frac{\pi}{2}\right]\)
2sin2x-(5m+1)sinx+2m2+2m=0
tìm m để pt có đúng 5 nghiệm \(x\in\left(\frac{-\pi}{2};3\pi\right)\)
Đặt \(sinx=a\) (\(-1\le a\le1\) ) \(\Rightarrow2a^2-\left(5m+1\right)a+2m^2+2m=0\) (1)
Để pt đã cho có đúng 5 nghiệm thuộc \(\left(-\frac{\pi}{2};3\pi\right)\) ta có 2 trường hợp sau:
TH1: \(\left\{{}\begin{matrix}a_1=1\\-1< a_2\le0\end{matrix}\right.\)
\(\Rightarrow2-5m-1+2m^2+2m=0\Leftrightarrow2m^2-3m+1=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\Rightarrow a_2=\frac{2m^2+2m}{2}=2\left(l\right)\\m=\frac{1}{2}\Rightarrow a_2=\frac{3}{4}\left(l\right)\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}a_1=-1\\0< a_2< 1\end{matrix}\right.\)
\(\Rightarrow2+5m+1+2m^2+2m=0\Rightarrow2m^2+7m+3=0\)
\(\Rightarrow\left[{}\begin{matrix}m=-3\Rightarrow a_2=-6\left(l\right)\\m=-\frac{1}{2}\Rightarrow a_2=\frac{1}{4}\end{matrix}\right.\)
Vậy \(m=-\frac{1}{2}\)
Tìm m để pt có 2 nghiệm thuộc \(\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
(2cosx-1)(2cos2x+2cosx-m)= 3-4sin2x
Tìm m để phương trình \(2sinx+mcosx=1-m\left(1\right)\) có nghiệm \(x\in\left[-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]\)
Tìm m để pt \(3\left(sinx.cosx\right)=4m.sinx.cosx\) có nghiệm \(x\in\left(0;\frac{3\pi}{4}\right)\)
Tìm m để phương trình \(2sinx+mcosx=1-m\) có nghiệm \(x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Cho phương trình \(3\sin^2x+2\left(m+1\right)sinx.cosx+m-2=0\)Số giá trị nguyên của m để trên khoảng\(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\)phương trình có hai nghiệm \(x_1,x_2\) với\(x_1\in\left(-\frac{\pi}{2};0\right),x_2\in\left(0;\frac{\pi}{2}\right)\)là
cho pt \(msinx+2cosx=1-m\). Tìm m để pt có nghiệm \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
\(x\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\Rightarrow\frac{x}{2}\in\left[-\frac{\pi}{4};\frac{\pi}{4}\right]\Rightarrow cos\frac{x}{2}\ne0\)
Đặt \(t=tan\frac{x}{2}\) \(\Rightarrow t\in\left[-1;1\right]\)
Ta có: \(\left\{{}\begin{matrix}sinx=2sin\frac{x}{2}cos\frac{x}{2}=\frac{2sin\frac{x}{2}}{cos\frac{x}{2}}.cos^2\frac{x}{2}=\frac{2t}{1+t^2}\\cosx=cos^2\frac{x}{2}-sin^2\frac{x}{2}=cos^2\frac{x}{2}\left(1-tan^2\frac{x}{2}\right)=\frac{1-t^2}{1+t^2}\end{matrix}\right.\)
Pt trở thành: \(\frac{2mt}{1+t^2}+\frac{2\left(1-t^2\right)}{1+t^2}=1-m\)
\(\Leftrightarrow m\left(t+1\right)^2=3t^2-1\)
\(\Rightarrow m=\frac{3t^2-1}{\left(t+1\right)^2}=\frac{6t^2-2}{2\left(t+1\right)^2}=\frac{-3\left(t^2+2t+1\right)+\left(9t^2+6t+1\right)}{2\left(t+1\right)^2}=-\frac{3}{2}+\frac{\left(3t+1\right)^2}{2\left(t+1\right)^2}\ge-\frac{3}{2}\)
\(\Rightarrow m\ge-\frac{3}{2}\)