*Tìm các số hữu tỉ x, y, z biết rằng: \(\frac{x}{11}\)=\(\frac{y}{12}\);\(\frac{y}{3}\)=\(\frac{z}{7}\) và 2x – y + z = 152.
Câu 1: a) Chia số 552 thành 3 phần tỉ lệ thuận với 3; 4; 5.
b) Chia số 315 thành 3 phần tỉ lệ nghịch với 3; 4; 6.
Câu 2: Tìm các số hữu tỉ x, y, z biết rằng: \(\frac{x}{11}=\frac{y}{12};\frac{y}{3}=\frac{z}{7}\) và 2x - y + z = 512.
#)Trả lời :
Câu 1 :
a) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )
b) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)
=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )
Câu 2 :
\(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)
\(\Rightarrow x=44;y=48;z=112\)
#~Will~be~Pens~#
1a) Gọi ba phần đó là x, y, z.
Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)
\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)
Vậy 3 phần đó là 138, 184, 230
b) Gọi 3 phần đó là a, b, c .
Ta có: a, b, c tỉ lệ nghịch với 3, 4, 6 nên \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)
\(\Rightarrow\hept{\begin{cases}a=420.\frac{1}{3}=140\\b=420.\frac{1}{4}=105\\c=420.\frac{1}{6}=70\end{cases}}\)
Vậy 3 phần đó lần lượt là 140, 105, 70
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
Bài 1: tìm các số nguyên x và y biết rằng:
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
bài 2: tìm hai số hữu tỉ x và y sao cho
x-y=x.y=x:y (y khác 0 )
bài 3 : tìm các số hữu tỉ x;y;z biết rằng
x(x+y+z)=-5; y(x+y+z)=9; z(x+y+z)=5
bài 4: người ta viết năm số hữu tỉ trên 1 vòng tròn, trong đó tích hai số cạnh nhau luôn bằng \(\frac{1}{4}\). tìm các số đó
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
tìm các số hữu tỉ x,y,z biết
a) x.y =\(\frac{2}{3}\); y.z = 0,6 ; z.x = 0,625
b) x(x-y+z) = -11 ; y(y-z-x) = 25 ; z(z+x-y) = 35
\(\left(xy\right):\left(yz\right)=\frac{2}{3}:0,6\Rightarrow\frac{x}{z}=\frac{10}{9}\)=> \(x=\frac{10}{9}z\Rightarrow\frac{10}{9}z.z=0,625\Rightarrow z^2=\frac{9}{16}\Rightarrow z=\pm\frac{3}{4}\)
\(\left(yz\right):\left(zx\right)=0,6:0,625\Rightarrow\frac{y}{x}=\frac{24}{25}\)
Với z=3/4 => x, y
Với z=-3/4 => x,y
Câu b làm tương tự nhé :)
Tìm các số hữu tỉ x,y,z biết rằng \(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)và \(2y^2-\left(z+5\right)^2=-25\)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
tìm các số hữu tỉ x, y , z
d)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z = -10
e) x (x + y + z) = -12; y (y + z + x ) = 18 ; z(z + x + y ) =30
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy \(x=-3\); \(y=-4\); \(z=-5\)
e) \(x\left(x+y+z\right)=-12\); \(y\left(y+z+x\right)=18\); \(z\left(z+x+y\right)=30\)
\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)
\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\); \(y=\frac{18}{-6}=-3\); \(z=\frac{30}{-6}=-5\)
TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\); \(y=\frac{18}{6}=3\); \(z=\frac{30}{6}=5\)
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\), \(\left(-2;3;5\right)\)
Tìm các số hữu tỉ x, y, z biết rằng:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
\(\left(x+y\right)xyz^2+\left(y+z\right)yzx^2+\left(z+x\right)zxy^2=477120\)
Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow x=3k;y=5k;z=7k\)
\(xy+yz+zx=3k.5k+5k.7k+7k.3k=k^2\left(15+35+21\right)=71k^2;xyz=3k.5k.7k=105k^3\)
Ta có : \(xyz\left(xz+yz+xy+xz+yz+xy\right)=477120\)
\(\Rightarrow xyz\left(xz+yz+xy\right)=238560\)\(\Rightarrow105k^3.71k^2=238560\Rightarrow k^5=32=2^5\Rightarrow k=2\)
Vậy : x= 6 ; y = 10 ; z = 14
Tìm các số hữu tỉ dương x,y,z biết : \(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}=1-\frac{1}{2+\frac{1}{3}}\)
Tìm các số hữu tỉ dương x,y,z biết : \(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}=1-\frac{1}{2+\frac{1}{3}}\)