xếp bốn nam và 4 nữ thành một hàng dọc. hỏi có bao nhiêu cách xếp sao cho không có nam nào đứng cạnh nhau
xếp bốn nam và 4 nữ thành một hàng dọc. hỏi có bao nhiêu cách xếp sao cho không có nam nào đứng cạnh nhau
Tìm \(x\in N\), biết \(P_x=120\)
=>x!=120
=>1*2*3*...*x=120
=>x=5
Tìm số nguyên dương \(n\) sao cho:
\(C^0_n+2.C^1_n+4.C^2_n+...+2^n,C^n_n=243\)
\(\left(x+2\right)^n=C^0_n\cdot x^n+C^1_n\cdot x^{n-1}\cdot2+...+C^n_n\cdot2^n\)(1)
Tổng các hệ số trong khai triển (1) là;
(1+2)^n=3^n
=>3^n=243
=>n=5
Tìm hệ số của số hạng chứa \(x^5\) trong khai triển đa thức \(f\left(x\right)=x\left(1-2x\right)^5\)
Ta có: \(x.\left(C^k_n.a^{n-k}.b^k\right)=x.\left(C^k_5.a^{5-k}.b^k\right)=C^k_5.1^{5-k}.2^k.x^k.x\)
\(=C^k_5.2^k.x^{k+1}\)
Mà ta cần tìm số hạng của x5
\(\Rightarrow k+1=5\Leftrightarrow k=4\)
Vậy số hạng của x5 là: \(C^4_5.2^4=80\)
Ta nhân thêm ''x'' vào số hạng tổng quát vì có ''x'' là nhân tử chung của mỗi số hạng trong khải triển
Một lớp có 40 học sinh gồm 25 nam và 15 nữ.Giáo viên CN cần chọn ra 6hs để tham gia trồng cây.Hỏi có bn cách chọn nếu a, không phân biệt nam nữ b,Có ít nhất 4hs nam và 1hs nữ c, Tính x/s biến cố 6hs có nhiều nhất 2 hs
a: Sô cách chọn là: \(C^6_{40}\left(cách\right)\)
b: Số cách chọn là:
\(C^4_{25}\cdot C^2_{15}+C^5_{25}\cdot C^1_{15}=2125200\left(cách\right)\)
Một lớp có 15 học sinh nam và 10 học sinh nữ. Chọn ra 3 học sinh a) Hỏi có bao nhiêu cách chọn ra một lớp trưởng, một lớp phó và một thủ quỹ? b) Hỏi có bao nhiêu cách chọn nếu lớp trưởng phải là học sinh nam? c)Tính xác suất biến cố 3 người được chọn có ít nhất một học sinh nữ
a: Số cách chọn là: \(C^3_{25}=2300\left(cách\right)\)
b: Số cách chọn là: \(C^1_{15}\cdot C^2_{24}=4140\left(cách\right)\)
trên kệ sách có 4 quyển toán,3q lý,7q hoa a, Có bn cách xếp 3 loại sách vào giá sách b, Tính xác suất chọn được 5 quyển sao cho ít nhất 3 quyển hoá
a. Có bao nhiêu cách xếp 3 loại sách vào giá sách?
Để tính số cách xếp 3 loại sách vào giá sách, ta sử dụng công thức tổ hợp chập 3 của 3 số 4, 3 và 7 (vì có 3 loại sách là toán, lý và hoá):
C(4,3) * C(3,3) * C(7,3) = 4 * 1 * 35 = 140
Vậy có 140 cách xếp 3 loại sách vào giá sách.
b. Tính xác suất chọn được 5 quyển sao cho ít nhất 3 quyển hoá.
Để tính xác suất chọn được ít nhất 3 quyển hoá trong 5 quyển, ta phải tính tổng xác suất chọn được 3 quyển, 4 quyển hoặc 5 quyển hoá.
Xác suất chọn được 3 quyển hoá:
C(7,3) * C(7,2) / C(14,5) = 35 * 21 / 2002 = 0,372
Giải thích: Để chọn được 3 quyển hoá, ta chọn 3 quyển hoá từ 7 quyển hoá và chọn 2 quyển từ 7 quyển còn lại (toán và lý). Tổng số cách chọn 5 quyển là C(14,5).
Xác suất chọn được 4 quyển hoá:
C(7,4) * C(4,1) / C(14,5) = 35 * 4 / 2002 = 0,070
Giải thích: Để chọn được 4 quyển hoá, ta chọn 4 quyển hoá từ 7 quyển hoá và chọn 1 quyển từ 4 quyển toán và lý còn lại. Tổng số cách chọn 5 quyển là C(14,5).
Xác suất chọn được 5 quyển hoá:
C(7,5) / C(14,5) = 21 / 2002 = 0,010
Giải thích: Để chọn được 5 quyển hoá, ta chọn 5 quyển hoá từ 7 quyển hoá. Tổng số cách chọn 5 quyển là C(14,5).
Vậy, tổng xác suất chọn được ít nhất 3 quyển hoá trong 5 quyển là:
0,372 + 0,070 + 0,010 = 0,452
Vậy, xác suất chọn được ít nhất 3 quyển hoá trong 5 quyển là 0,452 (hoặc khoảng 45,2%).
Cho tập hợp A= { 0,1,2,3,4,5,6,7}. Có bao nhiêu số tự nhiên chẵn có 6 chữ số khác nhau được lập thành từ các chữ số của tập A đồng thời phải có mặt ba chữ số 0,1,2 và chúng đứng cạnh nhau
Gọi số cần tìm là \(\overline{abcdef}\)
TH1: 0,1,2 là 3 số cuối
=>\(\overline{abc012};\overline{abc210}\)
a có 6 cách
b có 5 cách
c có 4 cách
=>CÓ 6*5*4*2=240 cách
TH2: \(\overline{ab\left\{0,1,2\right\}f}\)
0,1,2 có 3!=6 cách
a có 5 cách
b có 4 cách
f có 3 cách
=>Có 360 cách
TH3: \(\overline{a\left\{0,1,2\right\}ef}\)
0,1,2 có 3!=6 cách
f có 2 cách
e có 5 cách
a có 4 cách
=>Có 6*3*5*4=360 cách
TH4: \(\overline{\left\{0,1,2\right\}def}\)
{0;1;2} có 4 cách
f có 3 cách
d có 5 cách
e có 4 cách
=>Có 4*3*5*4=240 cách
=>Có 120+120+360+360+240=1200 cách
TH1 (012)def : chọn a từ (1,2) có 2 cách
chọn b từ (012)/(a) có 2 cách
chọn c từ (012)/(ab) có 1 cách
chọn f chẵn từ (4,6) có 2 cách
với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách
vậy có 2.2.1.4A2.2 số
TH2 a(012)ef
xếp chỗ cho 3 số (012) có 3! cách
chọn f từ (4,6) có 2 cách
chọn ae từ 4 số còn lại và xếp có 4A2 cách
vậy có 3!.2.4A2 số
TH3 ab(012)f
tương tự TH2
TH4 : abc(012):
chọn f chẵn từ (0,2) có 2 cách
chọn e từ (012)/(a) có 2 cách
chọn d từ (012)/(ab) có 1 cách
với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách
vậy có 2.2.1.5A3 số
tổng 4 TH ta có
2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số
gieo một con xúc xắc hai lần liên tiếp tính xác suất trong trường hợp tổng số chấm hai lần gieo là một số chia hết cho 3
A={(1;2); (1;5); (2;4); (2;1); (3;3); (3;6); (4;2); (4;5); (5;1); (5;4); (6;3); (6;6)}
=>n(A)=12
n(omega)=36
=>P(A)=12/36=1/3
cho đường tròn x²+y²+4x-6y+5=0. Viết phương trình đường thẳng d đi qua A(3;2) và cắt (C) theo một dây cung ngắn nhất.
F(x,y)=x^2+y^2+4x-6y+5
F(3;2)=9+14-12-12+5=-6<0
=>A nằm trong (C)
Dây cung MN ngắn nhất
=>IH lớn nhất
=>H trùng với A
=>MN có VTPT là (1;-1)
Phương trình MN là:
1(x-3)-1(y-2)=0
=>x-y-1=0