Thực hiện phép tính
a, (2x^3-4x+5x):(-3/2x)
b, (4x^3-5x+x):(2x-1)
c, (-3x^4+5x^3+6x^2-7x+1):(x^2+3x-1)
đ, (3^3-5x+2):(x-3)
a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)
cho hai đa thức c(x) = 5-8x^4+2x^3+x+5x^4+x^2-4x^3 vad d(x)=(3x^5+x^4-4x)-(4x^3-7+2x^4+3x^5.tính p(x)=c(x)+d(x),q(x)=c(x)-d(x).tìm nghiệm của f(x)=q(x)-(-2x^4+2x^3+x^2-12)
`C(x)=`\(5-8x^4+2x^3+x+5x^4+x^2-4x^3\)
`C(x)= (-8x^4+5x^4)+(2x^3-4x^3)+x^2+x+5`
`C(x)= -3x^4-2x^3+x^2+x+5`
`D(x)=`\(\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)
`D(x)= 3x^5+x^4-4x-4x^3+7-2x^4-3x^5`
`D(x)=(3x^5-3x^5)+(x^4-2x^4)-4x^3-4x+7`
`D(x)=-x^4-4x^3-4x+7`
`P(x)=C(x)+D(x)`
`P(x)=( -3x^4-2x^3+x^2+x+5)+(-x^4-4x^3-4x+7)`
`P(x)=-3x^4-2x^3+x^2+x+5-x^4-4x^3-4x+7`
`P(x)=(-3x^4-x^4)+(-2x^3-4x^3)+x^2+(x-4x)+(5+7)`
`P(x)=-4x^4-6x^3+x^2-3x+12`
`Q(x)=C(x)-D(x)`
`Q(x)=( -3x^4-2x^3+x^2+x+5)-(-x^4-4x^3-4x+7)`
`Q(x)=-3x^4-2x^3+x^2+x+5+x^4+4x^3+4x-7`
`Q(x)=(-3x^4+x^4)+(-2x^3+4x^3)+x^2+(x+4x)+(5-7)`
`Q(x)=-2x^4+2x^3+x^2+5x-2`
`F(x)=Q(x)-(-2x^4+2x^3+x^2-12)`
`F(x)=(-2x^4+2x^3+x^2+5x-2)-(-2x^4+2x^3+x^2-12)`
`F(x)=-2x^4+2x^3+x^2+5x-2+2x^4-2x^3-x^2+12`
`F(x)=(-2x^4+2x^4)+(2x^3-2x^3)+(x^2-x^2)+5x+(-2+12)`
`F(x)=5x+10`
Đặt `5x+10=0`
`\Leftrightarrow 5x=0-10`
`\Leftrightarrow 5x=-10`
`\Leftrightarrow x=-10 \div 5`
`\Leftrightarrow x=-2`
Vậy, nghiệm của đa thức là `x=-2.`
tìm nghiệm của các đa thức sau : a)f(x)=3x-1 b) A(x) = x-1/2 c) B(x) = -2x+1
a) Nghiệm của đa thức \(f\left(x\right)=3x-1\)
\(f\left(x\right)=3x-1=0\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
Vậy nghiệm của đa thức \(f\left(x\right)\) là \(\dfrac{1}{3}\)
b) Nghiệm của đa thức \(A\left(x\right)=x-\dfrac{1}{2}\)
\(A\left(x\right)=x-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy nghiệm của đa thức là \(x=\dfrac{1}{2}\)
c) Nghiệm của đa thức \(B\left(x\right)=-2x+1\)
\(B\left(x\right)=-2x+1=0\)
\(\Rightarrow-2x=-1\)
\(\Rightarrow x=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy nghiệm của đa thức \(x=\dfrac{1}{2}\)
Tính giá trị biểu thức \(A=\dfrac{a-8}{b-5}-\dfrac{4a-b}{3a+3}\) biết a - b = 3
Theo đề bài : \(a-b=3\Rightarrow a=b+3\).
Thay \(a=b+3\) vào \(A\) ta được :
\(A=\dfrac{a-8}{b-5}-\dfrac{4a-b}{3a+3}\)
\(=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\)
\(=\dfrac{b-5}{b-5}-\dfrac{4b+12-b}{3b+9+3}\)
\(=1-\dfrac{3b+12}{3b+12}=1-1=0\)
Vậy : Với \(a-b=3\) thì \(A=0.\)
\(a-b=3\\ \Rightarrow a=3+b\)
Thay \(a=3+b\) vào \(A\)
\(A=\dfrac{b+3-8}{b-5}-\dfrac{4.\left(b+3\right)-b}{3.\left(b+3\right)+3}\\ =\dfrac{b-5}{b-5}-\dfrac{4b+12-b}{3b+9+3}\\ =\dfrac{b-5}{b-5}-\dfrac{3b+12}{3b+12}\\ =1-1=0\)
Vậy \(A=0\)
Hai người đi xe máy đi cùng một lúc ngược chiều nhau từ hai điểm A,B và gặp nhau sau 3 giờ tại C biết rằng vận tốc của người đi từ A là v km/h và người đi từ A mỗi giờ đi chậm hơn người đi từ B là 10 km a, lập biểu thức biểu thị quãng đường AB b, tính quãng đường đó biết v = 40 km trên gi
a: Độ dài quãng đường AB là:
3v+3(v-10)=6v-30(km)
b: Khi v=40 thì AB=6*40-30=240-30=210(km)
Cho đa thức x²-3xy+y³-3xyz+1.Tìm đa thức M sao cho tổng của M và đa thức trên không chứa biến x
Để tổng của M và A ko chứa x thì
M+x^2-3xy+y^3-3xyz+1=y^3+1
=>M=-x^2+3xy+3xyz
Tìm bậc của các đa thức ax³-2x³+x(a là hằng số)
\(ax^3-2x^3+x=\left(a-2\right)x^3+x\)
- Với \(a=2\Rightarrow\) đa thức trở thành \(x\) có bậc 1
- Với \(a\ne2\Rightarrow\) đa thức có bậc 3
Vậy đa thức có bậc 1 nếu \(a=2\) và có bậc 3 nếu \(a\ne2\)
F(x)=x4+5x2-4x+x5-x4-8x2+3+2x3+2
Thu gọn và sắp xếp phải k ạ?
`F(x)= (x^4-x^4)+(5x^2-8x^2)-4x+x^5+3+2x^3+2`
`F(x) = -3x^2-4x+x^5+3+2x^3+2`
`F(x)= x^5+2x^3-3x^2-4x+3+2`
\(F\left(x\right)=x^4+5x^2-4x+x^5-x^4-8x^2+3+2x^3+2\)
\(F\left(x\right)=x^5+\left(x^4-x^4\right)+2x^3+\left(5x^2-8x^2\right)-4x+\left(3+2\right)\)
\(F\left(x\right)=x^5+2x^3-3x^2-4x+5\)
cho a/b=c/d với a,b,c,d khác 0
(a-c/b-d)2023=a2023+c2023/b2023+d2023
giúp mình với nha các bn .
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a-c}{b-d}\right)^{2023}=\left(\dfrac{bk-dk}{b-d}\right)^{2023}=k^{2023}\)
\(\dfrac{a^{2023}+c^{2023}}{b^{2023}+d^{2023}}=\dfrac{b^{2023}k^{2023}+d^{2023}k^{2023}}{b^{2023}+d^{2023}}=k^{2023}\)
=>\(\left(\dfrac{a-c}{b-d}\right)^{2023}=\dfrac{a^{2023}+c^{2023}}{b^{2023}+d^{2023}}\)