Bài 5: Đa thức

DA

Tính giá trị biểu thức \(A=\dfrac{a-8}{b-5}-\dfrac{4a-b}{3a+3}\) biết a - b = 3

TM
6 tháng 4 2023 lúc 21:34

Theo đề bài : \(a-b=3\Rightarrow a=b+3\).

Thay \(a=b+3\) vào \(A\) ta được : 

\(A=\dfrac{a-8}{b-5}-\dfrac{4a-b}{3a+3}\)

\(=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\)

\(=\dfrac{b-5}{b-5}-\dfrac{4b+12-b}{3b+9+3}\)

\(=1-\dfrac{3b+12}{3b+12}=1-1=0\)

Vậy : Với \(a-b=3\) thì \(A=0.\)

Bình luận (0)
H24
6 tháng 4 2023 lúc 21:35

\(a-b=3\\ \Rightarrow a=3+b\)

Thay \(a=3+b\) vào \(A\)

\(A=\dfrac{b+3-8}{b-5}-\dfrac{4.\left(b+3\right)-b}{3.\left(b+3\right)+3}\\ =\dfrac{b-5}{b-5}-\dfrac{4b+12-b}{3b+9+3}\\ =\dfrac{b-5}{b-5}-\dfrac{3b+12}{3b+12}\\ =1-1=0\)

Vậy \(A=0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
GC
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết