giải giúp em với ạ
giải giúp em với ạ
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều. Gọi M, N, P lần lượt là trung điểm của BB', A'C', AA' và H là hình chiếu của C lên AB. Hỏi mặt phẳng (MNP) vuông góc với mặt phẳng nào sau đây?? A. (AMP) B. (BCB') C. (C'CH) D. (BMH)
Cho hình chóp Sabcd có sa vuông góc với abcd , đáy abcd là hình chữ nhật có cạnh ab=a, ad=2a , sa= 2a căn 3
Gọi I là trung điểm của ab , mặt phẳng P qua I và vuông góc với Sb . Tính góc giữa mặt phẳng Sb và mp abcd
Giups mìnhhh với các bạn ơii , mk cần lời giải chi tiết , cảm ơnn nhiềuuu ah
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với (ABCD) và SA = 2a. 1. Chứng minh (SCD) vuông góc với (SAD) 2. Tính d(A, (SCD))
1: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
=>(SCD) vuông góc (SAD)
Cho hình chóp S.ABC, đáy là tam giác vuông tại C. Tam giác SAC là tam giác đều cạnh a nằm trong mặt phẳng vuông góc với đáy, cạnh AB bằng a căn 3. Gọi H là trung điểm AC. Chứng minh: a. (SBC) vuông góc (SAC) b. Tính góc giữa (SAB) và (ABC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a tâm O, SA vuông góc mặt đáy, SA = aV3 . Tính góc giữa hai mặt phẳng: a) Góc ((SAB),(ABCD)), ((SAB),(SAD)).
a: (SAB) giao (ABCD)=AB
SA vuông góc AB, SA thuộc (SAB)
AD vuông góc AB, AD thuộc (ABCD)
=>((SAB);(ABCD))=góc SAD=90 độ
Cho hình chóp S.ABCD, SA vuông góc đáy, SA = a √3 đáy ABCD là HCN có AB = a, AD = a √3 Tính góc tạo bởi các mp (SBC), (SCD), (SAC) và (SBD)
Câu 4: Cho hình chóp đều S.ABCD có đường cao SO, biết AB=a√2,SO=3a . Gọi là góc giữa hai mặt phẳng (SBC) và (SCD). Giá trị của cos bằng
Kẻ DM vuông góc SC
=>BM vuông góc SC
=>SC vuông góc (DMB)
=>(SCD) cắt (SBC)=SC
mà SC vuông góc (DMB)
=>alpha=góc DMB
DB=a căn 6
DM=BM=\(\dfrac{2\cdot S_{DCS}}{SC}=\dfrac{\sqrt{39}}{4}\)
\(cos\alpha=\left|\dfrac{DM^2+MB^2-DB^2}{2\cdot DM\cdot MB}\right|=\dfrac{3}{13}\)
Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B , SA vuông góc với ABC ,SA = a√3 . Xác định và tính góc giữa hai mặt phẳng SBC và ABC
\(SB=\sqrt{\left(a\sqrt{3}\right)^2+a^2}=2a\)
\(SC=\sqrt{SA^2+AC^2}=a\sqrt{5}\)
Vì SB^2+BC^2=SC^2
nên ΔSBC vuông tại B
(SBC;ABC)=(SB;BA)=góc SBA=60 độ
Giúp mình với ạ