2m²-mn/2mn-n²=m/n
2m²-mn/2mn-n²=m/n
\(=\dfrac{m\left(2m-n\right)}{n\left(2m-n\right)}=\dfrac{m}{n}\)
1: \(=\dfrac{7xy^2\cdot3y}{7xy^2\cdot x}=\dfrac{3y}{x}\)
2: \(=\dfrac{2x^2\left(x+y\right)^2}{7xy\left(x+y\right)}=\dfrac{2x\left(x+y\right)}{7y}\)
3: \(=\dfrac{5\left(x+2\right)}{25x\left(x+2\right)}=\dfrac{1}{5x}\)
4: \(=\dfrac{\left(x+3\right)^2}{2\left(x+3\right)}=\dfrac{x+3}{2}\)
Cho \(\dfrac{a+b}{a-c}\)=\(\dfrac{a+c}{a-c}\) với a\(\ne\)b, a\(\ne\)c và a\(\ne\)0. C/m: b=c
Lời giải:
$\frac{a+b}{a-c}=\frac{a+c}{a-c}$
$\Rightarrow a+b=a+c$
$\Rightarrow b=c$ (đpcm)
a.\(\dfrac{2}{\left(x+1\right)\left(x-3\right)}\)
b.\(\dfrac{2x+1}{x^2-5x+6}\)
c.\(\dfrac{1}{x^2+y^2}\)
d.\(\dfrac{5x+y}{x^2+6x+10}\)
Mng giúp em với ạ.Em cảm ơn
\(a,\dfrac{2}{\left(x+1\right)\left(x-3\right)}\\ đk\left\{{}\begin{matrix}x+1\ne0\\x-3\ne\end{matrix}\right.=>\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)
\(d,\dfrac{2x+1}{x^2-5x+6}=\dfrac{2x+1}{\left(x-2\right)\left(x-3\right)}\\ đk\left\{{}\begin{matrix}x-2\ne0\\x-3\ne0\end{matrix}\right.=>x\ne2;x\ne3\)
\(c,x^2\ge0\forall x\\ y^2\ge0\forall y\)
=> \(x\ne0;y\ne0\)
\(d,\dfrac{5x+y}{x^2+6x+10}\\ đkx^2+6x+10\ne0\)
(x-3y)2-(x-3y)
x(x+y)2+xy(x+y)
(x-3y)2-(x-3y)
`= [ x^2 - 2 . 3y . x + (3y)^2 ] -(x-3y) `
` = x^2 -6xy + 9y^2 - x + 3y `
x(x+y)2+xy(x+y)
`=x(x^2 + 2xy + y^2) + x^2y + xy^2`
` = x^3 + 2x^2y + xy^2 + x^2y + xy^2`
` = x^3 + 3x^2y + 2xy^2`
`a, (x-3y)^2 - (x-3y) = (x-3y)(x-3y-1)`
`= x^2 - 3xy - 3xy + 9y^2 - x + 3y`
`= x^2 - 6xy + 3y - x + 9y^2`
`b, x(x+y)^2 + xy(x+y)`
`= (x+y)(x^2+2xy)`
`= (x^3 + x^2y + 2x^2y + 2xy^2)`
cho hbh abcd có ac là đường chéo lớn kẻ ch vuông góc ad tại h, ck vuông góc ab tại k
a) tam giác ckh đồng dạng tam giác abc
b) hk=ac.sin góc bad
4x2-4=0
`4x^2-4=0`
`<=>4(x^2-1)=0`
`<=>x^2-1=0`
`<=>x^2=1`
`<=>x=+-1`
Vậy `S={+-1}`
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow4x^2=2^2\)
\(\Leftrightarrow4x=\pm2\)
\(\Rightarrow\left[{}\begin{matrix}4x=2\\4x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy. .
4x^2-4=0
<=>4x^2=4
<=>x^2=4/4
<=>x^2=1
<=>x=căn 1÷1
Một người đi quãng đường AB vận tốc 15/km trên nửa quãng đường đầu và vận tốc 10/km trên nửa quãng đường sau. Vận tốc trung bình của người đó trên cả quãng đường AB là …..km/h.
Thời gian người đó đi nửa quãng đường đầu là:
`15:15=1(giờ)`
Thời gian người đó đi nửa quãng đường sau:
`15:10=1,5(giờ)`
Tổng thời gian người đó đi quãng đường `AB` là:
`1+1,5=2,5(giờ)`
Vận tốc trung bình của người đó đi trên cả quãng đường `AB` là:
`30:2,5=12(km//h)`
Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây.
Cho tam giác ABC có AD là đường phân giác của góc A (D chia hết BC) biết AB=5 cm, AC=8,5 cm, BD=3cm. Tính BC
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>CD/8,5=3/5
hay CD=5,1(cm)
=>BC=13,6(cm)
Ta có :
AD là đường phân giác của \(\widehat{BAC}\)
=> \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
=> \(\dfrac{5}{8,5}=\dfrac{3}{CD}\)
=> CD = 5,1 (cm)
Ta có : BC = BD + CD
=> BD = 3 + 5,1
=> BD = 8,1 (cm)