Rút gọn: a)6.9-2.17/63.3-119
b)3.7.13.37.39-10101/505050-70707.
Mình đang cần gấp.Các bạn làm ơn giúp mình
Rút gọn: a)6.9-2.17/63.3-119
b)3.7.13.37.39-10101/505050-70707.
Mình đang cần gấp.Các bạn làm ơn giúp mình
a) \(\frac{6.9-2.17}{63.3-119}=\frac{54-34}{189-119}=\frac{20}{70}=\frac{2}{7}\)
b)Mình làm ở đây rồi nhá: Câu hỏi của Lady Ice - Học và thi online với HOC24
tính nhanh: 10-9+8-7+6-5+4-3+2-1
(me cần cách giải lớp 2 nah)
10-9+8-7+6-5+4-3+2-1 = (10-9)+(8-7)+(6-5)+(4-3)+(2-1)
= 1 + 1 + 1 + 1 + 1
= 5
Không biết có đúng hông nữa nhe, tại tui mới học lớp 6 hà.
\(=\lim\limits_{x\rightarrow+\infty}\frac{\left(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)\left(\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}\right)}{\left(\sqrt{x+\sqrt{x+\sqrt{x}}+\sqrt{x}}\right)}\)=\(\lim\limits_{x\rightarrow+\infty}\frac{x+\sqrt{x+\sqrt{x}}-x}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=\lim\limits\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}\)
=\(\lim\limits\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{\sqrt{x}}+\frac{1}{x\sqrt{x}}}}+1}\)
GIAO LUU
\(Lim_{x\rightarrow vc}=\frac{x+\sqrt{x+\sqrt{x}}-x}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}\\ \)
\(\Leftrightarrow Lim_{x\rightarrow vc}=\frac{\sqrt{\frac{x+\sqrt{x}}{x}}}{\sqrt{\frac{x+\sqrt{x+\sqrt{x}}}{x}}+1}=\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{x+\sqrt{x}}{x^2}}}+1}\\ \)
\(\Leftrightarrow\frac{Lim}{x\rightarrow+vc}=\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\frac{1}{\sqrt{x^3}}}}+1}=\frac{\sqrt{1+\frac{1}{+vc}}}{\sqrt{1+\sqrt{\frac{1}{+vc}+\frac{1}{+vc}}}+1}=\frac{\sqrt{1+0}}{\sqrt{1+\sqrt{0+0}}+1}=\frac{1}{2}\)
cho dãy số (un) xác định bởi u1=1 và un+1=\(\frac{2}{u_n^2+1}\) với mọi n≥1 .
chứng minh rằng (un) là 1 dãy số không đổi (dãy số có tất cả các số hạng đều bằng nhau)
cho số thực x>-1 . chứng minh rằng : (1+x)n≥1+nx với mọi số nguyên dương n
Lời giải:
Dùng quy nạp:
-Với $n=1$ thì $(1+x)^n=1+x=1+nx$
-Với $n=2$ : có $(1+x)^2=1+2x+x^2\geq 1+2x$ do $x^2\geq 0$ với mọi $x\in\mathbb{R}$
.......................................
-Giả sử bài toán đúng đến $n=k$, ta cần CM $(1+x)^{k+1}\geq 1+(k+1)x$
Ta có \((1+x)^{k+1}=(1+x)(1+x)^k\geq (1+x)(1+kx)=1+kx+x+kx^2\geq 1+kx+x=1+(k+1)x\) Do đó ta có đpcm
Biết 12+22+32+...+102=385.Tinh S=(1/7)2+(2/7)2+...+(10/7)2
Khác gì lớp 6 đâu đăng nhầm lớp hả:
\(S=\frac{1}{7^2}\left(1^2+2^2+3^2+...+10^2\right)=\frac{1}{7^2}.385=\frac{7.11.5}{7.7}=\frac{11.5}{7}\)
cho dãy số (un) xác định bởi u1=1 và un+1=\(\frac{2}{u^2_n+1}\) với mọi n≥1 .
chứng minh rằng (un) là 1 dãy số không đổi (dãy số có tất cả các số hạng đều bằng nhau)
cho dãy số (un) xác định bởi u1=1 và un+1=\(\frac{2}{u_n^2+1}\) với mọi n≥1 .
chứng minh rằng (un) là 1 dãy số không đổi (dãy số có tất cả các số hạng đều bằng nhau)
cho dãy số (un) xác định bởi u1=1 và un+1=\(\frac{2}{u^2_n+1}\) với mọi n≥1 .
chứng minh rằng (un) là 1 dãy số không đổi (dãy số có tất cả các số hạng dều bằng nhau)