Cho :
A=\(\dfrac{10^{2017}-1}{10^{2018}-1}\)
B=\(\dfrac{10^{2018}+1}{10^{2019}+1}\)
So sánh bằng 2 cách
Cho :
A=\(\dfrac{10^{2017}-1}{10^{2018}-1}\)
B=\(\dfrac{10^{2018}+1}{10^{2019}+1}\)
So sánh bằng 2 cách
ko hỉu sao hồi nãy mk nhắn tin mà ko gửi đi được. các bn nói cho mk cách khắc phục đi?
cho số thực x>-1 . chứng minh rằng : (1+x)n≥1+nx với mọi số nguyên dương n
Giao lưu:
\(\left\{\begin{matrix}x>-1\\n\in N\\\left(1+x\right)^n\ge\left(1+nx\right)\end{matrix}\right.\)(I)
-khi n=0 ta có 1=1 vẫn đúng => đúng với mọi n là số không âm {sao đề loại n=0 đi nhỉ}
-với x>-1 => 1+x> 0
vói x=0 ta có 1^n>=1 hiển nhiên đúng
{Ta cần c/m với mọi x khác 0 và x>-1}
C/M: Bằng quy nạp
với n=1 ta có: (1+x)>=(1+x) hiển nhiên.
G/s: (I) đúng với n=k tức là (1+x)^k>=(1+kx)
Ta cần c/m (I) đúng với (k+1)
với n=(k+1) ta có \(\left(1+x\right)^{k+1}\ge\left[1+\left(k+1\right)x\right]\)(*)
\(\Leftrightarrow\left(x+1\right)\left(1+x\right)^k\ge1+kx+x\Leftrightarrow\left(x+1\right)\left(1+kx\right)\ge1+kx+x\)
\(\Leftrightarrow\left(1+kx\right)+x+kx^2\ge1+kx+x\Leftrightarrow kx^2\ge0\)(**)
Mọi phép biến đổi là tương đương (**) đúng => (*) đúng
=> dpcm.
cho số thực x>-1 . chứng minh rằng : (1+x)n≥1+nx với mọi số nguyên dương n
Giao lưu:
\(\left\{\begin{matrix}x>-1\\n\in N\\\left(1+x\right)^n\ge1+nx\end{matrix}\right.\) (I)
\(x>-1\Rightarrow\left(1+x\right)>1\Rightarrow\left(1+x\right)^n>1voi\forall n\in N\)
với x=0 1^n>=1 luôn đúng ta cần c/m với x khác 0
\(\left\{\begin{matrix}n=1\Rightarrow\left(1+x\right)^1\ge\left(1+x\right)...\left\{dung\right\}\\n=2\Rightarrow\left(1+x\right)^2\ge\left(1+2x\right)...\left\{dung\right\}\\n=2\Rightarrow\left(1+x\right)^3\ge\left(1+3x\right)...\left\{dung\right\}\end{matrix}\right.\)
C/m bằng phản chứng:
Giả /sủ từ giá trị (k+1) nào đó ta có điều ngược lại (*)
Nghĩa là: khi n đủ lớn BĐT (I) không đúng nữa. và chỉ đúng đến (n=k)(**)
Như vậy coi (**) đúng và ta chứng minh (*) là sai .
với n=k ta có: \(\left(1+x\right)^k\ge\left(1+kx\right)\) (1) theo (*)
vói n=(k+1) ta có theo (**)
\(\left(1+x\right)^{k+1}\le\left[1+\left(k+1\right)x\right]\Leftrightarrow\left(1+x\right)\left(1+x\right)^k\le\left[1+kx+x\right]\)(2)
chia hai vế (2) cho [(1+x)>0 {do x>-1}] BĐT không đổi
\(\left(2\right)\Leftrightarrow\left(1+x\right)^k\le\frac{\left[\left(1+kx\right)+x\right]}{1+x}\) từ (1)=> \(\frac{1+kx+x}{x+1}\ge\left(1+x\right)^k\ge\left(1+kx\right)\)
\(\Rightarrow\frac{\left(1+kx\right)+x}{x+1}\ge\left(1+kx\right)\Leftrightarrow\left(1+kx\right)+x\ge\left(1+kx\right)+x+kx^2\)(3)
\(\left(3\right)\Leftrightarrow\left[\left(1+kx\right)+x\right]-\left[\left(1+kx\right)+x\right]\ge kx^2\)\(\Leftrightarrow0\ge kx^2\) (***)
{(***) đúng chỉ khi x=0 ta đang xét x khác 0} vậy (***) sai => (*) sai
ĐIều giả sử sai--> không tồn tại giá trị (k+1) --> làm BĐT đổi chiều:
=> đpcm
cho n là 1 số nguyên dương lớn hơn 1 . hãy chứng minh bất đẳng thức sau :
\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)>\(\frac{13}{24}\)
cho n là 1 số nguyên dương lớn hơn 1 . hãy chứng minh bất đẳng thức sau :
\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}>\frac{13}{24}\)
cho số thực x>-1 . chứng minh rằng : (1+x)n\(\ge\)1+nx với mọi số nguyên dương n .
cho n là 1 số nguyên dương lớn hơn 1 . hãy chứng minh bất đẳng thức sau :
\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}>\frac{13}{24}\)
Cho tam giác ABC có trung tuyến AD. Trên AB lấy điểm M sao cho AM/AB = 1/4; Trên AC lấy điểm N sao cho AN/AC = 1/2. Đoạn MN cắt AD tại E. Hỏi tỉ số AE/AD bằng bao nhiêu?
Nối B với N ta có:
Vì AN/AC=1/2
Tương tụ như AN=1/2AC
Suy ra:AN=NC(1)
Từ (1) suy ra:BN là đường trung tuyến
Ta được trung tuyến AD và BN cắt nhau tại P
Áp dụng đường trung tuyến của một tam giác ta được
\(\Rightarrow\)AP=2/3AD(2)
Từ(2) ta suy ra được AE=1/3 AD
Vậy AE=1/3AD(dpcm)
Nói B với N ta có :
Vì AN/AC=1/2
Tương tự như AN=1/2AC
Suy ra: AN=NC(1)
Từ (1) suy ra : BN là đường trung tuyến
Ta được trung tuyến AD và BN cắt nhau tại P
Áp dụng đường trung tuyến của một tam giác ta được => AP=2/3AD(2)
Từ(2) ta suy ra được AE=1/3 AD.
Vậy AE=1/3AD(dpcm)
tại sao
vì cảm biến là yếu tố quyết định hình dạng của bức ảnh
mỗi v mà mn cx ko hiểu ( mik cx ko hiểu luôn)