1A
2A
3B
4C
6A
12D
13A
14D
15D
16C
cho sinα = \(\dfrac{1}{4}\)
tính B = \(\dfrac{3\cot\alpha-tan\alpha}{2tan\alpha+cot\alpha}\)
sin a=1/4
=>sin^2a=1/16
=>cos^2a=15/16
\(B=\dfrac{3\cdot\dfrac{cosa}{sina}-\dfrac{sina}{cosa}}{2\cdot\dfrac{sina}{cosa}+\dfrac{cosa}{sina}}\)
\(=\dfrac{3\cdot cosa^2a-sin^2a}{sina\cdot cosa}:\dfrac{2\cdot sin^2a+cos^2a}{sina\cdot cosa}\)
\(=\dfrac{3\cdot cos^2a-sin^2a}{2\cdot sin^2a+cos^2a}\)
\(=\dfrac{3\cdot\dfrac{15}{16}-\dfrac{1}{16}}{2\cdot\dfrac{1}{16}+\dfrac{15}{16}}=\dfrac{44}{17}\)
Rút gọn biểu thức
B = \(\dfrac{\cos\alpha}{\sqrt{2}}\).\(\sqrt{\dfrac{1}{1+\cos\alpha}+\dfrac{1}{1-\cos\alpha}}\)
\(=\dfrac{cosa}{\sqrt{2}}\cdot\sqrt{\dfrac{1-cosa+1+cosa}{1-cos^2a}}\)
\(=\dfrac{cosa}{\sqrt{2}}\cdot\dfrac{\sqrt{2}}{sina}=\dfrac{cosa}{sina}=cota\)
sinα = 2, tanα = 2, cotα = 2 biết cosα = \(\dfrac{1}{3}\) α∈ (0;\(\dfrac{\pi}{2}\))
Tính cosα
$\sin \alpha =2$?? $\sin \alpha \in [-1;1]$ với mọi $\alpha$ mà bạn. Bạn xem lại đề.
Chứng minh R
sin4α + sin2α . cos2α + cos2α = 1
\(\dfrac{sin\text{α}}{1-cos\text{α}}\)+\(\dfrac{sin\text{α}}{1+cos\text{α}}\)+\(\dfrac{2}{sin\text{α}}\)
\(\dfrac{sin\text{α}}{1+cos\text{α}}\)+\(\dfrac{1+cos\text{α}}{sin\text{α}}\)=\(\dfrac{2}{sin\text{α}}\)
a: VT=sin^2a(sin^2a+cos^2a)+cos^2a
=sin^2a+cos^2a
=1=VP
b: \(VT=\dfrac{sina+sina\cdot cosa+sina-sina\cdot cosa}{1-cos^2a}=\dfrac{2sina}{sin^2a}=\dfrac{2}{sina}=VP\)
c: \(VT=\dfrac{sin^2a+1+2cosa+cos^2a}{sina\left(1+cosa\right)}\)
\(=\dfrac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\dfrac{2}{sina}=VP\)
giải các pt sau:
a, cot(x-\(\dfrac{\pi}{3}\))=1
b, tan(x+\(48^o\))=tan\(25^o\)
c, tan(x+\(\dfrac{3\pi}{4}\))=tan\(\dfrac{\pi}{7}\)
a: =>x-pi/3=pi/4+kpi
=>x=7/12pi+kpi
b: =>x+48 độ=25 độ+k*180
=>x=-23 độ+k*180 độ
c: =>x+3/4pi=pi/7+kpi
=>x=-17/28pi+kpi
8 cm đăng thức
sin4x.cot2x + cos4x.tan2x + sin4x - sin2x.cos2x= sin2x
\(VT=sin^4x\cdot\dfrac{cos^2x}{sin^2x}+cos^4x\cdot\dfrac{sin^2x}{cos^2x}+sin^4x-sin^2x\cdot cos^2x\)
\(=sin^2x\cdot cos^2x+cos^2x\cdot sin^2x+sin^4x-sin^2x\cdot cos^2x\)
\(=sin^2x\left(sin^2x+cos^2x\right)=sin^2x=VP\)
7 cm đăng thức
a) \(\dfrac{tan\alpha-tan\beta}{cot\alpha-cot\alpha}=tan\alpha.cot\beta\)
b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=\dfrac{1}{sin10^o}\)
c) 2(sin6α + cos6α) + 1 = 3(sin4α + cos4α)
c: 2(sin^6a+cos^6a)+1
=2[(sin^2a+cos^2a)^3-3*sin^2a*cos^2a]+1
=2-6sin^2acos^2a+1
=3-6*sin^2a*cos^2a
=3(sin^4a+cos^4a)
a:
Sửa đề: =-tana*tanb
\(VT=\left(\dfrac{sina}{cosa}-\dfrac{sinb}{cosb}\right):\left(\dfrac{cosa}{sina}-\dfrac{cosb}{sinb}\right)\)
\(=\dfrac{sina\cdot cosb-sinb\cdot cosa}{cosa\cdot cosb}:\dfrac{cosa\cdot sinb-cosb\cdot sina}{sina\cdot sinb}\)
\(=\dfrac{sin\left(a-b\right)}{cosa\cdot cosb}\cdot\dfrac{sina\cdot sinb}{sin\left(b-a\right)}\)
\(=-tana\cdot tanb\)
=VP
cm đẳng thức
c) sin4α + cos4α - sin6α - cos6α = sin2α . cos2α
Ta có:
`sin^4 \alpha + cos^4 \alpha -sin^6 \alpha- cos^6\alpha`
`=sin^4\alpha+cos^4\alpha-(sin^2\alpha+cos^2\alpha)(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha)`
`=sin^4\alpha + cos^4\alpha-(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha)`
`=sin^2\alpha cos^2\alpha(ĐPCM)`