Ôn tập chương III

SK
Hướng dẫn giải Thảo luận (2)

a) \(2m\left(x-2\right)+4=\left(3-m^2\right)x\)
\(\Leftrightarrow x\left(m^2+2m-3\right)=4m-4\)
​Xét \(m^2+2m-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\).
​Với \(m=1\) thay vào phương trình ta được:
\(0x=0\) luôn nghiệm đúng \(\forall x\in R\).
​Với \(m=-3\) thay vào phương trình ta được:
\(0x=4.\left(-3\right)-4\)\(\Leftrightarrow0x=-16\) phương trình vô nghiệm.
​Xét \(m^2+2m-3\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\).
Khi đó phương trình có nghiệm duy nhất: \(x=\dfrac{4}{m+3}\).
​Biện luận:
​Với m = 1 phương trình nghiệm đúng với mọi x thuộc R.
​Với m = -3 hệ vô nghiệm.
​Với \(\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{4}{m+3}\).

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)

a)
Đkxđ: \(\left\{{}\begin{matrix}-3x+2\ge0\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-2}{3}\\x\ne-1\end{matrix}\right.\)
b)
Đkxđ: \(\left\{{}\begin{matrix}x-2\ge0\\-x-4\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\)\(\Leftrightarrow2\le x\le4\).
c)
Đkxđ: \(\left\{{}\begin{matrix}3x^2+6x+11>0\\2x+1\ge0\end{matrix}\right.\)\(\Leftrightarrow2x+1\ge0\)\(\Leftrightarrow x\ge-\dfrac{1}{2}\).
d)
Đkxđ: \(\left\{{}\begin{matrix}x+4\ge0\\x^2-9\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\ne3\\x\ne-3\end{matrix}\right.\).

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)

Gọi p/s thứ nhất là \(\dfrac{1}{x}\), p/s thứ 2 là \(\dfrac{1}{y}\), p/s thứ 3 là \(\dfrac{1}{z}\)

Theo đề bài ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) (1)

\(\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{z}\); \(\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\left(\dfrac{1}{z}\right)\).

Thay biểu thức \(\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\left(\dfrac{1}{z}\right)\) trên vào (1) ta được :

\(5\cdot\left(\dfrac{1}{z}\right)+\dfrac{1}{z}=1\Rightarrow z=6\) Vậy phân số thứ ba là \(\dfrac{1}{6}\).

Ta có : \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\dfrac{1}{6}\end{matrix}\right.\left(Đề-bài\right)\)

Bài toán tổng hiệu \(\dfrac{1}{x}\) là số lớn, \(\dfrac{1}{y}\) là số bé (do \(\dfrac{1}{x}-\dfrac{1}{y}\) ra số dương).

Vậy \(\dfrac{1}{x}=\dfrac{\left(\dfrac{1}{6}+5\cdot\dfrac{1}{6}\right)}{2}=\dfrac{1}{2}\); \(\dfrac{1}{y}=5\cdot\dfrac{1}{6}-\dfrac{1}{2}=\dfrac{1}{3}\)

Vậy phân số thứ nhất là \(\dfrac{1}{2}\), phân số thứ hai là \(\dfrac{1}{3}\), phân số thứ ba là \(\dfrac{1}{6}\).

Trả lời bởi Đức Minh
SK
Hướng dẫn giải Thảo luận (1)

Để phương trình có hai nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)^2-4.\left(m+1\right)\left(2m-2\right)\ge0\\\Delta\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+9\ge0\\m\ne-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-3\right)^2\ge0\\m\ne1\end{matrix}\right.\)\(\Leftrightarrow m\ne1\).
​Áp dụng định ly Viet:

\(x_1+x_2=-\dfrac{3m-1}{m+1}=3\)\(\Leftrightarrow3m-1=-3m-3\)\(\Leftrightarrow6m=-2\)\(\Leftrightarrow m=-\dfrac{1}{3}\).
​Vậy \(m=-\dfrac{1}{3}\) là giá trị cần tìm.

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)

mấy bài này là ở lớp 9 học kì 2 dùng cộng đại số là nhanh nhất hoặc bấm máy tính

Trả lời bởi Trần Quang Đài
SK
Hướng dẫn giải Thảo luận (1)

Bấm MODE nhập 5 nhập 3

a, bấm 5 = -3 = -7 = ta được \(x_1=\dfrac{3+\sqrt{149}}{10};x_2=\dfrac{3-\sqrt{149}}{10}\)

Tương tự cho các câu còn lại

Trả lời bởi Trần Quang Đài
SK
Hướng dẫn giải Thảo luận (2)

Hai phương trình (cùng ẩn) được gọi là tương đương nếu chúng có cùng tập nghiệm.

Hai phương trình \(2x-5=0\)\(3x-\dfrac{15}{2}=0\) tương đương với nhau vì cùng có nghiệm duy nhất \(x=\dfrac{5}{2}\)

Trả lời bởi Linh Diệu
SK
Hướng dẫn giải Thảo luận (3)

a, ĐK x\(\ge5\) Đặt \(\sqrt{x-5}=y\Rightarrow x=y^2+5\)

Phương tình đã cho trở thành:\(y^2+5+y=y+6\)

\(\Leftrightarrow y^2-1=0\)

\(\Leftrightarrow y=-1;y=1\)

y=-1 loại vì \(\sqrt{x=5}\ge0\)

Ta có \(y=1\Rightarrow\sqrt{x-5}=1\Leftrightarrow x=6\)

b,làm tương tự câu a

c,ĐK:\(x\ge2\) Phương trình đã cho tương đương:\(\dfrac{x^2-8}{\sqrt{x-2}}=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\sqrt{2}\\x_2=-2\sqrt{2}\left(l\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=2\sqrt{2}\).

Trả lời bởi Trần Quang Đài
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (2)

- Điều kiện cần:
Phương trình \(3x-1\) có nghiệm là \(x=\dfrac{1}{3}\).
Điều kiện xác định của \(\dfrac{3mx+1}{x-2}+2m-1=0\)\(x\ne2\).
Để cặp phương trình tương đương thì phương trình \(\dfrac{3mx+1}{x-2}+2m-1=0\) có nghiệm duy nhất là \(x=\dfrac{1}{3}\).
Từ đó suy ra: \(\dfrac{3m.\dfrac{1}{3}+1}{\dfrac{1}{3}-2}+2m-1=0\)\(\Leftrightarrow-\dfrac{3}{5}\left(m+1\right)+2m-1=0\)\(\Leftrightarrow\dfrac{7}{5}m-\dfrac{8}{5}=0\)\(\Leftrightarrow m=\dfrac{8}{7}\).
- Điều kiện đủ
Thay \(m=\dfrac{8}{7}\) vào phương trình \(\dfrac{3mx+1}{x-2}+2m-1=0\) ta được:
\(\dfrac{3.\dfrac{8}{7}x+1}{x-2}+2.\dfrac{8}{7}-1=0\)\(\Leftrightarrow\dfrac{24}{7}x+1+\dfrac{9}{7}\left(x-2\right)=0\)\(\dfrac{33}{7}x-\dfrac{11}{7}\)\(\Leftrightarrow x=\dfrac{1}{3}\).
Vậy \(m=\dfrac{8}{7}\) thì cặp phương trình tương đương.

Trả lời bởi Bùi Thị Vân