Bài 3: Hình thang cân

SK

Hình thang ABCD (AB//CD) có \(\widehat{ACD}=\widehat{BDC}\). Chứng minh rằng ABCD là hình thang cân ?

H24
21 tháng 4 2017 lúc 18:15

Bài giải:

Gọi E là giao điểm của AC và BD.

∆ECD có \(\widehat{C_1}=\widehat{D}\) (do \(\widehat{ACD}=\widehat{BDC}\)) nên là tam giác cân.

Suy ra EC = ED (1)

Tương tự EA = EB (2)

Từ (1) và (2) suy ra AC = BD

Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.


Bình luận (1)
LD
24 tháng 6 2017 lúc 22:33

\(\(\widehat{C_1}\)

Bình luận (1)
LD
24 tháng 6 2017 lúc 22:50

Nối A với C, B với D. Gọi M là giao điểm của AC và BD.

Ta có: \(\widehat{MDC}=\widehat{MCD}\left(gt\right)\)

=> \(\bigtriangleup\)MDC cân tại M

=> MC = MD (1)

Ta lại có: \(\widehat{MAB}=\widehat{MCD}\) (vì hai góc so le trong và AB//CD)

\(\widehat{CDM}=\widehat{ABM}\) (vì hai góc so le trongvà AB//CD)

\(\widehat{CDM}=\widehat{DCM}\left(gt\right)\) nên \(\widehat{MAB}=\widehat{MBA}\)

=> \(\bigtriangleup\) AMB cân tại M

=> MA = MB (2)

Lại có: \(AC=AM+MC\)

\(BD=BM+MD\)

Mà: \(AM=BM\left(cmt\right)\)

\(MC=MD\left(cmt\right)\)

\(\Rightarrow AC=BD\)

=> Hình thang ABCD cân.

Bình luận (1)

Các câu hỏi tương tự
TB
Xem chi tiết
NH
Xem chi tiết
SK
Xem chi tiết
PO
Xem chi tiết
PL
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết