Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

H24

√x^2-6x+9=3-x 

x^2-1/2x+1/16=x+3/2 

√x-2√x-1=√x-1-1

√9-4√5-√5=-2

DD
29 tháng 6 2023 lúc 15:42

Let's solve each equation step by step:

√(x^2 - 6x + 9) = 3 - x

Squaring both sides of the equation, we get:
x^2 - 6x + 9 = (3 - x)^2
x^2 - 6x + 9 = 9 - 6x + x^2

The x^2 terms cancel out, and we are left with:
-6x = -6x

This equation is true for any value of x. Therefore, there are infinitely many solutions.

x^2 - (1/2)x + 1/16 = x + 3/2

Moving all terms to one side of the equation, we get:
x^2 - (1/2)x - x + 3/2 - 1/16 = 0
x^2 - (3/2)x + 29/16 = 0

To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)

In this case, a = 1, b = -3/2, and c = 29/16. Plugging in these values, we get:
x = (3/2 ± √((-3/2)^2 - 4(1)(29/16))) / (2(1))
x = (3/2 ± √(9/4 - 29/4)) / 2
x = (3/2 ± √(-20/4)) / 2
x = (3/2 ± √(-5)) / 2

Since the square root of a negative number is not a real number, this equation has no real solutions.

√(x - 2)√(x - 1) = √(x - 1) - 1

Squaring both sides of the equation, we get:
(x - 2)(x - 1) = (x - 1) - 2√(x - 1) + 1
x^2 - 3x + 2 = x - 1 - 2√(x - 1) + 1
x^2 - 4x + 2 = -2√(x - 1)

Squaring both sides again, we get:
(x^2 - 4x + 2)^2 = (-2√(x - 1))^2
x^4 - 8x^3 + 20x^2 - 16x + 4 = 4(x - 1)
x^4 - 8x^3 + 20x^2 - 16x + 4 = 4x - 4

Rearranging terms, we have:
x^4 - 8x^3 + 20x^2 - 20x + 8 = 0

This equation does not have a simple solution and requires further calculations or approximation methods to find the solutions.

√9 - 4√5 - √5 = -2

Simplifying the left side of the equation, we get:
3 - 4√5 - √5 = -2
-√5 - 5 = -2
-√5 = 3

This equation is not true since the square root of a number cannot be negative.

Therefore, the given equations either have infinitely many solutions or no real solutions.

  
Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
NH
Xem chi tiết
LM
Xem chi tiết
HN
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
PM
Xem chi tiết
PM
Xem chi tiết
KG
Xem chi tiết