Bài 1: Căn bậc hai

HN

Với a,b,c,d thuộc Q thỏa mãn a+b+c+d=0. CMR x=\(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}\in Q\)

SG
15 tháng 6 2017 lúc 17:45

Thấy \(a+b+c+d=0\Rightarrow\left\{{}\begin{matrix}a=-b-c-d\\b=-a-c-d\\c=-a-b-d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab-cd=-b^2-bc-bd-cd=\text{-(b + c) (b + d)=(a+d)(b+d)}\\bc-ad=-ca-c^2-cd-ad=\text{-(a + c) (c + d)=(b+d)(c+d)}\\ca-bd=-a^2-ab-ad-bd=\text{-(a + b) (a + d)}=\left(c+d\right)\left(a+d\right)\end{matrix}\right.\)\(\Rightarrow\)x=(a+d)(b+d)(c+d)

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
PJ
Xem chi tiết
VT
Xem chi tiết
EC
Xem chi tiết
MH
Xem chi tiết
LT
Xem chi tiết
NP
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết