Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

TN

Trong khoảng \(\left(0;\frac{\pi}{2}\right)\) thì pt: \(\sin^24x+3\sin4x.\cos4x-4\cos^24x=0\) có bn nghiệm?

NL
29 tháng 8 2020 lúc 14:51

\(\Leftrightarrow\left(sin4x-cos4x\right)\left(sin4x+4cos4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x-cos4x=0\\sin4x=-4cos4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(4x-\frac{\pi}{4}\right)=0\\tan4x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{4}=k\pi\\4x=arctan\left(-4\right)+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{k\pi}{4}\\x=\frac{1}{4}arctan\left(-4\right)+\frac{k\pi}{4}\end{matrix}\right.\)

Pt có 4 nghiệm trên khoảng đã cho

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
TN
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết