Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

NT

Tìm nghiệm của phương trình : \(sin^4x+cos^4x+cos\left(x-\frac{\pi}{4}\right).sin\left(3x-\frac{\pi}{4}\right)-\frac{3}{2}=0\) .

NL
29 tháng 9 2020 lúc 15:44

\(\Leftrightarrow1-\frac{1}{2}sin^22x+cos\left(x-\frac{\pi}{4}\right)sin\left(3x-\frac{\pi}{4}\right)-\frac{3}{2}=0\)

Đặt \(x-\frac{\pi}{4}=a\Rightarrow x=a+\frac{\pi}{4}\)

\(\Rightarrow1-\frac{1}{2}sin^2\left(2a+\frac{\pi}{2}\right)+cosa.sin\left(3a+\frac{3\pi}{4}-\frac{\pi}{4}\right)-\frac{3}{2}=0\)

\(\Leftrightarrow1-\frac{1}{2}cos^22a+cosa.cos3a-\frac{3}{2}=0\)

\(\Leftrightarrow2-cos^22a+cos4a+cos2a-3=0\)

\(\Leftrightarrow-cos^22a+2cos^22a-1+cos2a-1=0\)

\(\Leftrightarrow cos^22a+cos2a-2=0\)

\(\Leftrightarrow cos2a=1\Leftrightarrow cos\left(2x-\frac{\pi}{2}\right)=1\)

\(\Leftrightarrow sin2x=1\Rightarrow x=\frac{\pi}{4}+k\pi\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
BH
Xem chi tiết
SB
Xem chi tiết
QN
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết