\(=\sqrt{4\cdot\left(3-\sqrt{5}\right)^2}+2\sqrt{\left(3+\sqrt{5}\right)^2}\)
=2(3-căn 5)+2(3+căn 5)
=6-2căn 5+6+2căn 5=12
\(=\sqrt{4\cdot\left(3-\sqrt{5}\right)^2}+2\sqrt{\left(3+\sqrt{5}\right)^2}\)
=2(3-căn 5)+2(3+căn 5)
=6-2căn 5+6+2căn 5=12
Gidipt 1) sqrt(x ^ 2 - x) = sqrt(3 - x)
2) sqrt(x ^ 2 - 4x + 3) = x - 2
3) sqrt(4 * (1 - x) ^ 2) - 6 = 0
4) sqrt(x ^ 2 - 4x + 4) = sqrt(4x ^ 2 - 12x + 9)
5) sqrt(x ^ 2 - 4) + sqrt(x ^ 2 + 4x + 4) = 0
6) 1sqrt(x + 2sqrt(x - 1)) + sqrt(x - 2sqrt(x - 1)) = 2
Bài 2 : Rút gọn biểu thức sau A = sqrt(5 - 2sqrt(6)) - sqrt((sqrt(2) - sqrt(3)) ^ 2)
A = (sqrt(4 + 2sqrt(3)) - 1)/(sqrt(4 + 2sqrt(3)) +2)
Chứng minh đẳng thức (sqrt(4 - 2sqrt(3)))/(1 + sqrt(2)) / ((sqrt(2) - 1)/(sqrt(3) + 1)) = 2
a) A = (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)) + (sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) b) B = 2sqrt(27) + sqrt((1 - sqrt(3)) ^ 2) - 4/(sqrt(2))
a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2
2: Giải phương trình a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2
Tính:
\(\left(\dfrac{3\sqrt{3}-2\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{3\sqrt{2}+2\sqrt{3}}{\sqrt{3}+\sqrt{2}}\right)\cdot\dfrac{5-2\sqrt{6}}{4}\)
Thực hiện các phép tính (không được ghi mỗi kết quả không, phải giải chi tiết)
A = \(2\sqrt{10}.3\sqrt{8}.2\)
B = \(\sqrt{20}\left(2\sqrt{3}-\sqrt{5}\right)\)
C = \(\left(2\sqrt{5}-3\right)\left(2\sqrt{5}+3\right)\)