Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=120+90+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\widehat{C}+\widehat{D}=150^o\)
Mà \(\widehat{C}=2\widehat{D}\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}=100\\\widehat{D}=50\end{matrix}\right.\)
Vậy ...
Ta có:
\(A+B+C+D=360^0\)
\(\Leftrightarrow120^0+90^0+2D+D=360^0\)
\(\Leftrightarrow3D=150^0\)
\(\Rightarrow D=50^0\)
\(C=2D=100^0\)
xét tứ giác ABCD ,ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)(định lí tổng 4 góc trong tứ giác)\(\Leftrightarrow12^0+90^o+\widehat{C}+\widehat{D}=360^o\Leftrightarrow\widehat{C}+\widehat{D}=150^o\)
vì \(\widehat{C}=2\widehat{D}\) nên \(3\widehat{D}=150^o\) suy ra \(\widehat{D}=50^o,\widehat{C}=100^o\)