Ôn tập chương 1

NT

tìm x,y,z biết :(x-1\5)^2004 +(y+0,4)^100 + (z-3)^678=0

VT
23 tháng 12 2019 lúc 9:54

\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

Ta có:

\(\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{matrix}\right.\forall x,y,z.\)

\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\) \(\forall x,y,z.\)

\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0+\frac{1}{5}\\y=0-0,4\\z=0+3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\in\left\{\frac{1}{5};-0,4;3\right\}.\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LN
Xem chi tiết
LL
Xem chi tiết
MM
Xem chi tiết
LD
Xem chi tiết
TN
Xem chi tiết
FH
Xem chi tiết
MT
Xem chi tiết
LV
Xem chi tiết
NK
Xem chi tiết