Bài 7: Tỉ lệ thức

NS

tìm x,y,z biết

a)3x=2y,7y=5z và x-y+z=32

b)2x=3y=5z và x+y-z=95

c)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}vàxyz=810\)

VT
17 tháng 8 2019 lúc 18:12

c) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x.y.z=810.\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

\(x.y.z=810\)

=> \(2k.3k.5k=810\)

=> \(30k^3=810\)

=> \(k^3=810:30\)

=> \(k^3=27\)

=> \(k=3.\)

Với \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\\z=5.3=15\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(6;9;15\right).\)

Chúc bạn học tốt!

Bình luận (0)
LN
17 tháng 8 2019 lúc 18:32

a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số = nhau , ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) = \(\frac{x-y+z}{10-15+21}\) = \(\frac{32}{16}\) = 2

Vậy: x = 2.10 = 20

y = 2.15 = 30

z = 2.21 = 42

b) Ta có: 2x = 3y = 5z

=> \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}\) => \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta đc:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) = \(\frac{x+y-z}{15+10-6}\) = \(\frac{95}{19}\) = 5

Vậy: x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
NA
Xem chi tiết
NX
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
NP
Xem chi tiết
NS
Xem chi tiết