Bài 8: Tính chất của dãy tỉ số bằng nhau

NH

tìm x,y,z biết:

a/ x/2 = y/3 ; y/5 = z/4 và x+y-z= -26

b/ x/1 = y/2 = z/3 và 4x - 3y + 2z =36

c/ x/4 = y/8 và xy=128

VT
6 tháng 11 2019 lúc 21:26

b) Ta có: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}.\)

=> \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)\(4x-3y+2z=36.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{1}=9\Rightarrow x=9.1=9\\\frac{y}{2}=9\Rightarrow y=9.2=18\\\frac{z}{3}=9\Rightarrow z=9.3=27\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(9;18;27\right).\)

c) Ta có: \(\frac{x}{4}=\frac{y}{8}.\)

=> \(\frac{x}{4}=\frac{y}{8}\)\(x.y=128.\)

Đặt \(\frac{x}{4}=\frac{y}{8}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=8k\end{matrix}\right.\)

Có: \(x.y=128\)

=> \(4k.8k=128\)

=> \(32.k^2=128\)

=> \(k^2=128:32\)

=> \(k^2=4\)

=> \(k=\pm2.\)

TH1: \(k=2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=8.2=16\end{matrix}\right.\)

TH2: \(k=-2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-2\right)=-8\\y=8.\left(-2\right)=-16\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(8;16\right),\left(-8;-16\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
DT
Xem chi tiết
KO
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
PT
Xem chi tiết
KH
Xem chi tiết
JM
Xem chi tiết
AV
Xem chi tiết