Ta có: \(\dfrac{x+y}{3}=\dfrac{5-z}{1}=\dfrac{y+z}{2}=\dfrac{9+y}{5}=k\)
\(\dfrac{\left(x+y\right)+\left(5-z\right)+\left(y-z\right)+\left(9-y\right)}{3+1+2+5}=\dfrac{x+y-4}{1}\)
⇒\(\left\{{}\begin{matrix}x+y-4\\x+y=3k\end{matrix}\right.\Rightarrow k+4=x+y\)
\(\Rightarrow4+k=3k\Rightarrow4=2k\Rightarrow k=2\)
\(\Rightarrow5-z=k\Rightarrow z=5-k=5-2=3\)
\(\Rightarrow9+y=5k\Rightarrow9+y=10\Rightarrow y=10-9=1\)
\(\Rightarrow x+y=3k\Rightarrow x+y=6\Rightarrow x=6-y=6-1=5\)
Vậy \(\left\{{}\begin{matrix}x=5\\y=1\\z=3\end{matrix}\right.\)
CHÚC BẠN HK TỐT